[image: image1]

[image: image2.wmf]Trend of minimum transistor switching energy

1

10

100

1000

10000

100000

1000000

1995

2005

2015

2025

2035

Year of First Product Shipment

Min transistor switching energy, kTs

High

Low

trend

he computer industry is quickly ap​proach​ing a fundamental brick wall. The last ~150 years of developments in the fields of thermodynamics and quantum mech​an​ics have established, beyond all rea​sonable doubt, a number of in​con​tro​ver​tible physical facts that conspire to place firm limits on future computer per​for​mance.
First, the total information content of any physical system is finite. There are strict limits on the number of bits that may be stored in a system of given size and energy content. Atomic matter con​tains only a few bits of physical in​for​mation per atom, and this places strict limits on bit storage densities.
Second, physical dynamics is re​ver​sible, meaning that it transforms physical states in a one-to-one fashion. As a re​sult, information can never really be de​stroyed. Every clock cycle (that is, bil​lions of times a second), a typical logic gate in today’s processors “overwrites” its old output with a new one. But, the information in the old output physically cannot be destroyed. In today’s CPUs, at least 100,000 bits of physical in​for​ma​tion (electron states) are used (re​dun​dant​ly) to represent each logical bit. All this information, since it cannot be de​stroyed, is essentially pushed out into the en​vironment, and the energy committed to storing this waste information (en​tro​py) in the environment is, by definition, heat. In fact, the majority of the heat coming out of your laptop or desktop com​puter can be di​rect​ly attributed to the phys​ical information discarded in its CPU’s logic operations.
Of course, over time, logic gates are becoming more efficient. Researchers are experimenting with molecular logic technologies that use many fewer phys​ical bits to represent a logical bit. How​ever, the absolute minimum we will ever attain is of course at least 1 physical bit used per logical bit encoded!
As a result, we can calculate a firm limit on the power-performance of future computers that use conventional logic techniques based on throwing away bits. Let’s say you demand a laptop that uses no more than about 100 Watts of power, because otherwise it will be too hot and/or noisy to use comfortably. (Think about a 100 W light bulb, and a 1,000 W hair dryer.) It turns out that the max​i​mum rate at which bits of physical in​for​mation can be discarded within your computer is given simply by the rate of power consumption, divided by the tem​per​ature of the environment into which the machine will dump its waste heat.

 Assuming you’re not planning to only use your laptop while spacewalking on interstellar voyages, the typical en​vi​ron​ment temperature will be on the order of room temperature, or about 300 de​grees Kelvin above absolute zero.

So, modern physics can guarantee you that your laptop will be able to dis​card no more than ~3.5×1022 bits of physical information per second—this in fact really is just the same physical quantity as (100 W ÷ 300 K), but with the units converted to different (but com​patible) physical units of bits per second.
Wow, ten to the twenty-second pow​er sounds like a huge number, but con​si​der that today’s fastest processors (e.g., the Pentium 4 Extreme) already have clock speeds of 3.2 GHz, while the lar​gest CPUs (e.g., Itanium 2) have over 220 million transistors. If we discarded the gate voltage information of all those transistors every clock cycle, it would mean that ~7×1017 bits were discarded each second! Even if only half the tran​s​istors were switched on average, this is already only 100,000× smaller than the limit. We can only get significantly clo​ser by continuing to reduce the physical redundancy of our bit encodings.
How long will it be before this 3×1022 bit-ops/sec limit for 100-W room-temperature conventional com​pu​ting is reached?
A corollary of Moore’s Law tells us that historically (and this has really remained true over the last 100 years) computer performance has doubled about every 18 months to two years. At this rate, a factor of 100,000 will only take another 25-33 years to achieve—that is, before to​day’s college graduates will retire. If bit redundancies stop decreasing before this, per​for​mance of conventional ma​chines will level off even sooner!
There is one, and only one, solution to this dilemma that is consistent with the most fundamental laws of physics: namely, stop throwing away so many bits when we compute. Instead, un​com​pute the unwanted bits. This turns out to al​low us to recycle most of their energy, ra​ther than dissipating it to waste heat! This is the idea behind reversible com​pu​ting. It really is just the ap​pli​ca​tion of gen​eral principles of recycling to com​puting. I therefore sometimes also call it “green computing.”
OK, that’s the basic principle behind reversible computing. Now, how does it work?

Ballistic Processes
A ballistic process in physics is a pro​cess in which a system proceeds “for​ward” under its own momentum, with only a small fraction of the free energy in the system being converted into heat. This also means that only a small fraction of the system’s extropy (com​pres​sible in​for​mation) is being converted to entropy (in​com​pressible information).
For in​stance, when an ICBM (In​ter​con​tinental Ballistic Missile) makes a suborbital flight between continents, it “coasts” for most of the journey, with only a small fraction of its kinetic and po​tential energy being lost to friction dur​ing its trajectory through the upper at​mosphere (thus the term “ballistic”). As another example, an electron will tra​vel ballistically in a regular structure like a silicon crystal or a carbon nanotube, until it hits a lattice defect which deflects its path, and turns its extropy (the in​for​mation describing its motion) into en​tro​py.

The degree to which a process is ballistic can be quantified by its quality factor, or Q: this is the ratio between the amount of energy involved in carrying out the process, and the amount that is dis​sipated to heat. It’s also the ratio be​tween the extropy involved and the amount of entropy generated.

How high can Q be? For a perfect diamond crystal vibrating in a vacuum, it can be as large as 1012 or more. This means the diamond will vibrate trillions of times before its motion damps out. We know of no fundamental reason why very high Q’s cannot also be achieved in much more complex structures—such as those within a computer.
The idea in reversible computing is to construct future nanocomputers as os​cil​lators that work ballistically, with high Q. You put in the initial data, give the computer a “kick” to get it started, and it “coasts” along ballistically, from one step of the computation to the next, losing only a small fraction of its energy to heat at each step. This would allow it, in theory, to perform a number of op​er​a​tions per unit time that is far beyond the power-over-temperature limit I men​tioned earlier, limited only by the Q that can be attained in the logic mechanism.

Probably the biggest challenge for reversible computing is to design na​no​meter-scale electrical or elec​tro​mech​an​i​cal oscillators that have a high enough Q to allow reversible computers to be prac​tical. But, we know of no fundamental reason why it cannot be done. It is “just” an engineering problem, which we expect will someday be solved. So, for the remainder of this article, I will focus on the higher-level architectural and computer science aspects of reversible computing.
Adiabatic Circuits

For a physical process to be highly ballistic implies that it is also highly adiabatic (“without flow of heat”), since any time heat is flowing between sub​systems at different temperatures, this means that extropy is being converted to en​tropy, and free energy is being re​duced. A small subfield of electrical en​gin​eering called adiabatic circuits stud​ies logic circuits that operate in a most​ly-adiabatic mode.
Ordinary digital logic encodes bits using two voltage levels (high and low), and uses transistors to connect and dis​connect circuit nodes to each other and to power supplies so as to twiddle the voltage levels in a way that carries out the desired computation.

Adiabatic logic circuits can use the same overall approach, but two new rules must be followed: (1) never turn on a transistor when there is a voltage dif​ference between its terminals, and (2) never turn off a transistor when there is a current passing through it. These are both irreversible events, which I call “sparks” and “squelches” respectively, and they each cause a certain irreducible amount of entropy to be generated.

It turns out you can still do universal computing despite these constraints, but you have to power your logic gates using trapezoidal variable-voltage power sup​plies driven by specially-designed res​o​nant oscillators, and the logic design itself has to be reversible.
Reversible Logic

A physical process can be highly adia​batic only if it is mostly logically re​ver​sible. This is because of the fact I mentioned earlier: Physical information can​not be destroyed, so any bits that are dis​carded in your logic (together with the entire retinue of physical bits used to encode them) turn into entropy.
What kind of logic doesn’t discard bits? Well, logic that only reversibly transforms bits, in place.

Understanding this requires thinking about logic gates a little bit differently. You are probably familiar with ordinary Boolean logic gates such as NOT, AND, and OR, and you probably think of them as consuming 1 or two inputs and pro​du​cing an output. But actually, in the elec​tronics, these gates do not consume the input bits—only measure them—and the output bit is not, strictly speaking, “pro​duced,” it is destructively modified, overwritten with the new information. (And the old information is kicked out to form entropy.) Even a NOT gate, as tra​ditionally implemented, is irreversible, since it overwrites its last output.

We require a new type of logic gate, which takes the joint state of all its bits (whether you want to think of them as “input” or “output”) and transforms them in a reversible (one-to-one) way.
If you write down the truth table for one of these gates, rather than having columns for “input” bits and “output” bits—which would be misleading—you should have columns for the “before” state and “after” state of all of its bits. (I call this a “transition table.”) In order for the gate to be reversible, there should be a one-to-one relationship between the before and after states that are used.
Perhaps the simplest-to-describe non-trivial reversible gate, which was in​ven​ted by Tom Toffoli at MIT in the 1970’s, is today called CNOT (short for “controlled NOT”). It operates on a pair of bits, A and B, and flips B if and only if A is 1 (“true”). You can see why this is reversible—if you perform CNOT on bits A and B, and then do it again, it undoes itself; it uncomputes the change to B.
The simplest universal reversible gate, also invented by Toffoli, is called the Toffoli gate, or CCNOT (controlled-controlled-NOT). It takes 3 bits ABC, and performs a CNOT between B and C if and only if A is 1. In other words, it flips C if and only if both A and B are 1. The CCNOT gate also undoes itself. If all you have are Toffoli gates, you can still build a general-purpose reversible computer that is asymptotically as ef​fi​cient as any other (except quantum com​puters) to within a constant factor.
Although they are the easiest re​ver​si​ble gates to describe, the CNOT and CC​NOT gates aren’t actually the easiest to implement using ordinary transistors.
In fact, it turns out that even a single CMOS (complementary metal-oxide-semiconductor) transistor, together with a controlling signal, can be thought of as implementing a simple type of reversible gate. There are two types of CMOS transistors, PFETs and NFETs, and I call the corresponding reversible gates the PDRAG and NDRAG gates, for reasons we will soon see. It is helpful in de​scri​bing these to use three distinct voltage levels, call them 0, 1, 2.

A DRAG gate (either P or N) op​er​ates on 3 bits (really 3-level “trits”), which I will call A, B, and G. A and B are the source/drain terminals, and G is the transistor’s gate node. In a typical DRAG gate operation, some subset of the bits make unconditional, externally-dri​ven transitions between old and new val​ues. The rest of the bits (if any) ei​ther remain as they are, or are “dragged” to follow the trajectory of another of the bits, depending on the type of gate.

[image: image3.png]Some reversible control flow structures:

If/then/else Simple loop Subroutine call

There isn’t space to give the complete rules for DRAG gates here. They can be derived from the behavior of CMOS transistors. However, as an example, Table 3 gives the transition table for NDRAG(A:0→1), which is a notation for an NDRAG gate in which node A unconditionally goes from 0 to 1, G remains constant, and B is con​di​tion​al​ly dragged.

Note that if B is initially 0, then it will either stay 0 if G is 0, or be “drag​ged” to 1 by A (case circled) if and only if G is 2.

The “E” (error) entry for B in the se​cond row means that the adiabatic rule “no squelches” is violated as A ap​proach​es G, and as a result B will end up at an in​ter​mediate level somewhere be​tween 0 and 1 (depending on the trans​is​tor’s ex​act switching threshold), which is con​​si​dered an error. The line through the “before” case A=0, B=1, G=2 means there will be a sudden, non-adiabatic “spark” in this case as B jumps from 1 to 0, after which B will be dragged up to 1. Both squelches and sparks are dis​al​lowed in a true adiabatic circuit, and so these cases must be avoided in order for this “gate” to be used reversibly.
Note that these CMOS transistors considered as logic gates differ from tra​ditional logic gates in that the same physical hardware can act as a different gate at different times. For example, af​ter being used as an NDRAG(A:0→1) gate, the same NFET can later be used as an NDRAG(A:1→0) gate, which will undo any change to B, if G is still the same.
It turns out that networks of DRAG gates, constructible using ordinary CMOS transistors, are in fact sufficient for reversibly emulating arbitrary par​tial​ly- to ful​ly-reversible computers with at most constant-factor overheads. In a pro​ject at MIT in the 1990’s, a number of then-graduate students (including my​self) fab​ricated several fully-reversible pro​cessor chips using a particular style of DRAG-based logic called SCRL (for split-level charge recovery logic), to prove that it could be done.
Since reversible logic can only re​ver​si​bly modify bits in-place, not overwrite them, many aspects of computer ar​chi​tecture are changed by it. For example, since an ordinary WRITE operation is ir​re​versible, registers must instead be ac​ces​sed using operations like CNOT to flip register bits in place, or by swapping bits in and out, or by using DRAG op​er​a​tions to reversibly copy information to empty bits, or to uncopy bits from a dup​licate copy.

Likewise, temporary bits that are computed internally in the course of do​ing an operation (like the carry bits in a ripple-carry adder) have to be un​com​puted later before that hardware can be reversibly reused for another operation.

The extra steps needed to uncompute old intermediate results do in general take some overhead, and this overhead cuts into the energy savings that can be a​chieved by using reversible computing. But, as long as sufficiently high-Q de​vi​ces can be built, and the cost per device continues to decrease, the overhead is outweighed by the much larger number of simultaneous operations that can be performed in a given time interval while staying within one’s power budget. I have done a detailed analysis which indicates that by the year 2050, 100-Watt reversible computers could be 1,000 to 100,000 times faster than the fastest possible 100W irreversible com​puter, even when the overheads of re​ver​sible logic are taken into account, as​sum​ing that Q’s can continue to in​crease.

Reversible Instruction Sets
In an optimistic scenario, as device Q’s continue to increase, eventually we will reach a point where further im​prove​ments in energy efficiency require not just the logic circuits, but also the ma​chine’s instruction set itself to be re​ver​si​ble. This is because emulating ir​re​ver​sible instruction sets on reversible hard​ware, while possible, does introduce ex​tra overhead. Better asymptotic ef​fi​cien​cy can in general be achieved if we al​low the CPU programmer to code a cus​tom reversible algorithm for the problem at hand. The program itself will tell the com​puter exactly when and how to un​com​pute unwanted information, and when to throw it away, so as to make the best overall use of the machine’s re​sour​ces.

In the project at MIT, we also designed reversible machine instruction sets. These are different, but not too dif​ferent, from ordinary irreversible in​struc​tion sets. Many common operations like NEG and ADD are already logically re​versible, because they perform one-to-one transformations of their arguments in-place. Many others, like AND, are not, and have to be replaced by op​er​a​tions like ANDX, which exclusive-or’s the result into a destination register, es​sentially performing a bitwise CCNOT on its 3 register arguments. Reversible memory access is done with reversible operations like EXCH (exchange) rather than read and write. And finally, or​din​ary branches and jumps are irreversible (because the machine forgets where it came from), and must be replaced with special paired branches, where the in​struction at the branch destination can figure out where control came from, and uncompute that information (e.g., see some branch patterns in Figure 3).

Machine-language programs written in such reversible instruction sets have the interesting property that they can be run either forwards or in reverse. That is, after running a program, you could hit the machine’s “reverse button” and it will retrace all of its steps, and give you back the original inputs. However, this is not needed for energy recovery; that happens continuously inside the CPU, whichever direction it is running.

Reverse execution does have some minor applications which we have in​ves​ti​gated, such as rolling back aborted transactions in databases, parallel sim​u​lations, or multi-player games, or to back up to an earlier state to deal with runtime exceptions, to repair damage caused by viruses or computer break-ins, or as an aid to program debugging. However, these applications can be implemented in other ways also, without actually using a reversible instruction-set design. The primary motivation for studying re​ver​si​ble instruction sets is their long-term ne​ces​sity for improving the ther​mo​dy​nam​ic efficiency of computing. And also, just be​cause they’re cool!
Reversible High-Level Programming Languages

Of course, programming in assembly language is inconvenient. If reversible programming is necessary, we would prefer to write our programs in a high-le​vel language. Once the requirement for reversibility becomes sufficiently strin​gent, automatic program translations to re​versible languages performed in​ter​nal​ly within compilers cannot be expected to do the job, and we will need to give the high-level programmer the ability to di​rectly control how the machine dis​po​ses of its unwanted information. Thus, we need a reversible high-level lan​guage.
In a reversible language, we must be able to forego inherently irreversible statements, such as destructive as​sign​ment of new values to program var​i​a​bles, including to members of data struc​tures. Instead, we must make do with operations such as swapping or XOR’ing values into desired locations.

Subroutines must clean up after themselves, and uncompute temporary values that they computed in their local variables, and in other scratch space. Automatic garbage collection inherently wastes free energy, because the garbage col​lector does not know how the in​for​mation in the allocated memory was computed, and thus can do nothing but compress it, as much as is feasible (an​al​o​gously to a trash compactor) and then eject it as entropy. If the program is de​signed to explicitly uncompute and de​al​locate its own garbage, it can often do much better.
Control flow constructs are similar to traditional ones, but are time-symmetric in form. There are IF and SWITCH var​i​ants that test conditions at the end as well as the beginning of the body, in order to reversibly re-merge the control flow, as well as loop constructs that pro​vide conditions for loop entry as well as loop exit. Subroutines can be called ei​ther forwards or in reverse, which pro​vides an easy way to clean up their tem​por​ary results. (Run the subroutine for​wards, then do something with the result, then run it backwards.)
Early reversible languages included Janus, Ψ-Lisp, and R, my own con​tri​bu​tion (Figure 4). Others have been in​ven​t​ed recently within the quan​tum com​pu​t​ing community, where reversible com​pu​ting is needed for other reasons.

Reversible vs. Quantum Computing

Reversible computing is similar to quan​tum computing, and shares some tech​no​logical requirements with it. However, the motivations for them are different, as are some of the requirements.

Briefly, a quantum state is a unit-length vector of complex numbers, one for each possible classical state of the system. A classical state can be rep​re​sented by a quantum state vector having a 1 in that classical state, and a 0 in all the other classical states.

A quantum operation is a linear, one-to-one mapping from “before” state vectors to “after” state vectors. A clas​si​cal reversible operation is therefore a special case of a quantum operation, in which classical input states are always mapped to classical output states. The quantum viewpoint therefore expands the range of possible operations. An in​put state can be mapped to a state that is “in between” classical states, in the sense that the vector has non-zero com​ponents in more than one classical state. Apparently, allowing these in-between states opens up paths to the solution of some problems that are exponentially shorter than the shortest classical paths we know of. In particular, there is a quantum algorithm for factoring numbers (Shor’s algorithm) that requires only polynomially many quantum op​er​a​tions to factor a number with n digits, whereas the best known classical al​gor​i​thm takes an exponential number of clas​sical operations. Similarly, simulating quan​tum mechanics itself can be done in polynomial time on a quantum com​pu​ter, but takes exponential time using known classical algorithms.
This, then, is the primary motive for quantum computing; to obtain ex​po​nen​tial algorithmic speedups for certain problems. Interestingly, the quantum al​gorithms have to be reversible in order to work properly, and in fact, they fre​quently use ordinary classical reversible algorithms as subroutines. So, this is an​other application for reversible lan​gua​ges: writing quantum algorithms. A few additional instructions are needed to pro​vide the uniquely quantum operations. Unfortunately, only a very few applications are known for quantum computing so far.

However, the motive for reversible computing is different. It is to speed up future computing not just for rare ap​pli​ca​tions but in all cases where power dis​sipation is (for whatever reason) limited, and where the application can be par​al​lelized to take advantage of the larger number of operations that can be done in par​allel in a reversible machine per unit time, given the power budget.
Like quantum computing, reversible computing requires that the internal state of the computer be well-isolated from un​wanted interactions with the en​vi​ron​ment, interactions which might un​pre​dictably scramble a bit, converting it to entropy.

However, unlike quantum com​pu​ting, reversible computing does not re​quire that all quantum states of the ma​chine be kept stable against interactions with the environment, only that the clas​sical states be stable. This allows certain nat​urally-stable quantum states called pointer states to be used for representing the state of the computation. These are the states that, unlike general quantum states, can be measured without dis​turb​ing them. The ability to stick with pointer states vastly simplifies the task of error correction.
So, in summary, reversible com​pu​ting is both much easier and more gen​er​al​ly useful than quantum computing, and so it deserves increased attention, rel​a​tive to quantum computing. Quantum computing has received a lot of hype, more than is probably justified. In con​trast, reversible computing is little known, and still relatively obscure, even though it has been around much longer.

The connection between bit erasure and entropy generation was hinted at in 1949 by von Neumann, and was proven in 1961 by Rolf Landauer of IBM. Charles Bennett (also of IBM) proved that useful reversible computing was theoretically possible in 1973, and in 1989 he devised a general algorithm for fairly efficiently emulating irreversible computations on reversible machines. There have been few important the​o​ret​i​cal developments since then, but a large number of more or less adiabatic circuit implementations have been proposed.

Unfortunately, present-day oscillator technologies do not yet provide high enough quality factors to allow re​ver​si​ble computing to be practical today for general-purpose digital logic, given its overheads. Nano-device engineers need to turn increasing attention to finding ways to solve this problem, as it offers the only hope for possibly maintaining Moore’s Law for more than another two or three decades.
Conclusion

Does your parent or spouse bug you for not recycling your bottles and cans? Tell them they really should be scolding your computer! (Or perhaps Intel.)
Computers today are terribly waste​ful devices. They throw away millions of bits, billions of times every second. Each bit contains ~100,000 physical bits, which all turn into entropy. Their as​so​ci​a​ted energy becomes heat, which burns up your lap, runs up your electric bill, and limits your computer’s performance.
The most energy-efficient computers based on ordinary irreversible logic that will ever be physically possible are “only” ~100,000× times as efficient as to​day’s, which means the irreversible-com​puter industry will definitely hit a plateau sometime within your lifetime.
Truly, the only way we might ever get around this limit is by using re​ver​si​ble computing, which uncomputes bits that are no longer needed, rather than overwriting them. Uncomputing bits al​lows their energy to be recovered and re​cycled for use in later operations.

In essence, a reversible computer computes by ballistically coasting along through its configuration space, an​al​o​gously to a roller-coaster following a complexly-shaped track through a high-dimensional space.

Examples of reversible logic circuits, microprocessor architectures, and pro​gram​ming languages have already been designed, and although they are a little bit different from familiar ones, they are sim​ilar enough that today’s computer and software engineers can quickly learn to adopt such design styles, when (not if) it becomes necessary.
The ballistic quality factors of today’s oscillator technologies are not quite good enough yet to make re​ver​sible computing a practical reality today, but we don’t know any reason why con​tin​ued engineering improvements, per​haps based on nanoscale elec​tro​mech​an​i​cal resonators, might not push the workable quality factors up high enough that reversible computing will eventually become practical.

In conclusion, if you’re looking to get “ahead of the curve” on a future technology, you just might want to take a closer look at reversible computing. The most rock-solid principles of fun​da​mental physics can be used to prove that re​versible computing will be absolutely necessary for further progress in com​pu​ter performance once bit redundancies (physical bits per logical bit encoded) stop decreasing so quickly, which must happen within 20-30 years. Many the​or​etical and engineering proofs-of-concept have established that reversible com​puting really can work, and it isn’t even all that hard to understand.

Educating yourself in reversible computing today just might give you a valuable leg up when the computer in​dustry reaches that big brick wall that’s loom​ing ahead, not far down the road, which only reversible computing can hurdle.
For further reading: Mike’s Reversible Computing research website, located online at http://www.cise.ufl.edu/re​search/​revcomp, includes a large number of original research papers relating to reversible computing, which include extensive references into the primary literature. Lectures and recommended reading lists on reversible computing and related topics can be found on the website for Mike’s course, Physical Limits of Computing, available at http://www.cise.ufl.edu/​~mpf/​phys​lim.

By Michael Frank

With device sizes fast approaching atomic-scale limits, ballistic circuits that conserve information will soon offer the only physically possible way to keep improving energy efficiency and therefore speed, for most computing applications.

Figure � SEQ Figure * ARABIC �1�. Projected minimum bit energies. Derived from the 1999 International Technology Roadmap for Semiconductors.

Note�change�in B

Before�
After�
�
A�
B�
C�
A�
B�
C�
�
0�
0�
0�
0�
0�
0�
�
0�
0�
1�
0�
0�
1�
�
0�
1�
0�
0�
1�
0�
�
0�
1�
1�
0�
1�
1�
�
1�
0�
0�
1�
0�
0�
�
1�
0�
1�
1�
0�
1�
�
1�
1�
0�
1�
1�
1�
�
1�
1�
1�
1�
1�
0�
�
Table � SEQ Table * ARABIC �2�. CCNOT Transition Table.

Before�
After�
�
A�
B�
A�
B�
�
0�
0�
0�
0�
�
0�
1�
0�
1�
�
1�
0�
1�
1�
�
1�
1�
1�
0�
�
Table � SEQ Table * ARABIC �1�. CNOT Transition Table

Note�change�in C

A�0→1

Before�
After�
�
A�
B�
G�
A�
B�
G�
�
0�
0�
0�
1�
0�
0�
�
0�
0�
1�
1�
E�
1�
�
0�
0�
2�
1�
1�
2�
�
0�
1�
0�
1�
1�
0�
�
0�
1�
1�
1�
1�
1�
�
0�
1�
2�
1�
1�
2�
�
0�
2�
0�
1�
2�
0�
�
0�
2�
1�
1�
2�
1�
�
0�
2�
2�
1�
2�
2�
�
Table � SEQ Table * ARABIC �3�. Transition table for the single-transistor NDRAG(A:0→1) gate.

Table 2. CCNOT Transition Table

B

G

Figure � SEQ Figure * ARABIC �2�. An NFET as an NDRAG(A:0→1) gate.

Figure � SEQ Figure * ARABIC �3�. Some reversible control-flow constructs. Instructions shown are from the PISA instruction set. Blue arrows show reverse paths. Note the ubiquitous use of paired branches.

(defsub mult (m1 m2 prod)

 (for pos = 0 to 31

 (if (m1 & (1 << pos))

 (prod += (m2 << pos)))))

Figure � SEQ Figure * ARABIC �4�. Example 32-bit integer multiplication algorithm in the R language. Note the use of the reversible += operator, rather than the irreversible assignment statement =.

