Chapter 10

Alternative applications for
reversibility

Most of this thesis has focused on the benefits of reversibility that are gained through
its reduction of the energy dissipation of computation. However, full reversible oper-
ation may be useful for other reasons as well. In this short chapter we briefly survey
some of the possibilities.

10.1 Auditable/verifiable/trustable computation

One interesting application for full reversibility in a computer system is to assist in
meeting requirements for auditable or verifiable computation. This requirement exists
in at least two forms for which reversibility might be useful:

e It should be possible to determine, with high confidence, whether a transient
hardware error of some sort (e.g., a random bit-flip in memory) might have
occurred during a computation, to help us determine whether the result of the
computation can be considered valid.

e The system should ensure that any malicious intruder not having physical access
to the hardware is unable to destroy any information stored in the system, and
that the intruder’s presence and complete actions can always be determined
after the fact.

Let us examine how reversibility might be useful for helping to satisfy these re-
quirements.

249



250 CHAPTER 10. ALTERNATIVE APPLICATIONS FOR REVERSIBILITY

10.1.1 Detecting transient errors

Full reversibility could be used to detect transient hardware errors as follows. The
initial state for the computation is set up, and we record the entire initial state, or
if that is too large, a cryptographically secure hash of the entire initial state. Then
a computation is run, and produces some result. Then we reverse the processor
direction, and run in reverse, back to the initial state. Then we compare the state
with the stored state or the checksum. If there are any differences, then some error
must have occurred during the computation, and the result should be considered
untrustworthy.

If the processor is designed to guarantee reversibility at the hardware level, then
any differences in initial state will indicate that a hardware error occurred. However,
if the processor only guarantees reversibility under an assumption of the correctness
of some piece of software, then differences in initial state could indicate the presence
of either a hardware error or an error in that software.

Hardware errors. If the error is a transient hardware error due to some random
influence from the environment (such as a cosmic ray shower, perhaps), then it is very
unlikely that an error would be missed by this detection scheme, as this would require
two independent error events, one during the forward computation and one during
the reverse computation, that happened to cancel each other out so that the identical
initial state was reached even though the final result might have been corrupted.

If such a transient hardware error is detected, then the user can simply try running
the computation again, and repeat until the computation proceeds forwards and
backwards with no error being detected. In this way, a very high-confidence result
can always be obtained eventually, even if there is a significant probability of transient
hardware errors occurring during an individual run of the computation.

Of course, an alternative technique for detecting and correcting transient errors,
without resorting to reversibility, is to run multiple copies of a system side-by-side, or
run a single machine multiple times, and compare the results, and perhaps compare
the entire state at checkpoints along the way.

Reversibility may also be useful for detecting the presence of some kinds of perma-
nent hardware faults, since if the fault is permanent, then presumably the difference
between initial states would be the same each time. The time at which the fault
first makes itself felt could be rapidly determined by running forwards and backwards
for different lengths of time in a binary search pattern. Note, however, that some
permanent faults, such as a bitwise logical-complement instruction that consistently
fails to flip a certain bit (in both the forwards and reverse directions), may maintain
reversibility, and so will not be detected by the process of comparing initial states.

Note also that we will not necessarily catch transient or permanent hardware
errors if they affect the state-comparison process as well as (or instead of) the main



10.1. AUDITABLE/VERIFIABLE/TRUSTABLE COMPUTATION 251

computation.

Software errors. If the system does not guarantee reversibility at the hardware
level, the above technique will also catch those software errors that happen to lead
to forward computations that fail to match the corresponding reverse computations.
However, other kinds of software errors will not be caught. For example, if the system
compiler correctly guarantees that all programs will be correctly reversible, then any
errors in user programs compiled by that compiler will remain undetected by this
technique.

Note also that if we detect an error in reversibility that is a software error, then
an easy way to pinpoint its precise location is to run partial computations forwards
and backwards, and find exactly how far forwards you must go before the reversibility
of the system is corrupted. A binary search can be used to pinpoint the precise time
of the error after O(log(n)) partial computations, where n is the number of steps in
the entire computation. The machine state at this time can be examined to help
determine the cause of the error. This technique will be a useful tool in debugging
software that is intended to ensure reversibility on hardware that does not by itself
guarantee reversibility. However, this will of course incur the usual reversibility cost
of slower execution time, on traditional serial processors.

10.1.2 Logging or limiting effects of unwelcome intrusions

Suppose we have a requirement that any computer cracker that manages to get past
system security measures should (1) be unable to actually permanently destroy any
data, and (2) have the complete history of his actions on the system be determinable
once his interference is discovered.

A traditional approach to item 1 is to make backups of data and log user activities,
but this does not help if the cracker destroys data before it manages to get backed
up, or corrupts the backup software itself so that new data does not get backed up
properly.

However, if the system guarantees full reversibility at some level that is impossible
for the cracker to interfere with (e.g., at the hardware level), then by the definition
of reversibility, whatever actions he takes cannot permanently destroy any user data,
or any information that the cracker had input to the system in order to do his dirty
work.

Additionally, once the presence of the cracker is detected, the machine can be
disconnected from the network and reversed to recover any desired earlier state of
execution, and all of the cracker’s actions can be observed, and the clean state prior
to his break-in can be recovered.

However, note that reversibility does not protect us from the cracker’s corrupting
the system’s outputs after the time he breaks in. He could in general still alter the



252 CHAPTER 10. ALTERNATIVE APPLICATIONS FOR REVERSIBILITY

running state of the system so that it produced invalid or misleading data until his
interference is discovered, and its effects on the system are undone. Any inputs to
the system while it was in a corrupted state would have to be re-input once a clean
state is restored. All those inputs could be recovered by backing up over the time
after the cracker’s interference.

But this suggests an alternative technique for achieving the same protection with-
out requiring reversibility. Namely, one could simply have an incorruptible mechanism
for recording the initial state of the system (when it is first turned on in a clean-slate
state) and for recording every bit of information that flows into the system, including
any timing information, if that is important. If the system is deterministic, then that
stored information is sufficient for reconstructing the complete machine state at any
later time—the system is “reversible” in the sense that we could always back up to
the state at any earlier time by simply going back to the initial state and proceeding
forwards from there.

The obvious drawback to this technique is that if the system has been running
continuously for a long time, say a year, and we only want to back up a small amount,
we will have to spend another year to get up to the desired point. But then, the
obvious solution is to also have an incorruptible mechanism for checkpointing the
system state periodically, so that we can just go forwards from the last checkpoint.

In summary, although reversibility may be useful for tracing the activity of mali-
cious crackers, and preventing them from damaging any data, it is not theoretically
any better than just reliably recording the system’s initial state and all inputs. It
may or may not turn out to be easier to implement. Thus, this application is not, by
itself, a convincing justification for reversibility.

10.2 Program debugging

One interesting application of a reversible instruction set is that it makes it very
simple to write a bi-directional debugger, which allows stepping backwards as well
as forwards through a program. This feature eases the software debugging process,
since, when observing that the program is behaving incorrectly, one can simply run
in reverse from the point where the problem was first observed, to quickly trace back
through the preceding events that led to the errant behavior.

Our simulator for the Pendulum instruction set (written by Matt DeBergalis) has
the feature that one can step backwards as well as forwards through the program code,
while observing registers. The simulator is thus a simple example of a bi-directional
debugger, at the level of assembly instructions.

During the development of the compiler discussed in §9.4.3, these bi-directional
debugging capabilities proved very useful several times, for tracking down the causes



10.3. TRANSACTION PROCESSING AND DATABASE ROLLBACK 253

of incorrect program behavior caused by bugs in the compiler. During the compiler
development process, we were using a version of the Pendulum instruction set that
guaranteed reversibility independently of program well-formedness. This allowed the
bidirectional capabilities of the simulation/debugging envrionment to function even
when the compiler still had bugs. Incorrect program behavior was tracked backwards
in time until the instructions that had caused the inappropriate behavior were found,
at which point the compiler could easily be fixed.

So we have seen that a reversible computing capability can ease debugging. How-
ever, reversible computing is not strictly necessary for implementing a bi-directional
debugger. For example, Boothe (1998, [27]) describes algorithms that can be used
to implement bi-directional debugging environments for normal (irreversible) pro-
gramming languages. There are many other bi-directional debuggers as well; see for
example [172] and the references in [27]. One simple technique that is sometimes
used is to save periodic checkpoints of program state, and when stepping backwards,
just re-compute forwards from the previous saved checkpoint to reach the state of the
program at a desired time-point.

So, alhough pure reversible computing makes bi-directional debugging trivial, it is
not strictly necessary to compute reversibly in order to achieve this debugging capa-
bility. If one’s only requirement is bi-directional debugging, it might be easier to just
reinstrument an existing programming environment to achieve this directly, rather
than coming up with a full computing reversible computing system from scratch.

10.3 Transaction processing and database rollback

It seems that the operation of “rolling back” the effects of an aborted transaction,
which is common in some types of database systems, could possibly be implemented
on top of a more general framework for undoing the actions of inter-communicating,
reversible processes in a multitasking operating system for a reversible computer.

However, many details of this connection remain to be worked out; I can not yet
say with confidence that this sort of application for reversible processing makes sense.
Database rollback can already be performed quite well without requiring that the
computer system be reversible at all levels. It is not yet clear whether the requirements
of this application justify the sort of total, low-level reversibility that we have been
discussing.

10.4 Speculative execution in multiprocessors

Similarly, it appears that reversibility might be useful to coordinate the activities of
multiple CPUs which are running an underlying sequential algorithm in a parallel



254 CHAPTER 10. ALTERNATIVE APPLICATIONS FOR REVERSIBILITY

multiprocessing system. The individual CPUs might optimistically perform compu-
tations on data under the assumption that the data is valid (as in Knight’s paper
[90]), but when an inconsistency is detected, rather than restarting the processor’s
computation entirely, the processor might be reversibly rolled back to the point at
which it read the bad data, and then proceed from there using the new, correct data.

10.5 Numerical stability in physics simulations

Apart from the performance benefits discussed in previous chapters, there are some
advantages to using reversible algorithms when simulating physical systems. Re-
versibility is a sort of conservation law that is maintained in the real world, and so
should also be maintained in the simulation. The flow of information in the physi-
cal system can and should be mirrored by the flow of information in the simulation.
Failing to do this can lead to the simulated state of the system drifting farther and
farther from the set of states that are possible in the real system being simulated.

We saw this behavior in our simulation of the Schrédinger wave equation (§9.5.6,
p. 241). In the original irreversible version of the program, errors that crept into the
wavefunction would grow in amplitude without bound. The simulation could only
run for a certain amount of time before being swamped by ever-increasing artifacts in
the wave function and going completely haywire. The reversible version, in contrast,
although it was certainly not completely precise, always maintained a reasonably-
shaped wave function, and was never observed to become swamped out by artifacts.

Perhaps this makes sense because if the artifacts steadily grow in one time-
direction, then that would mean they would have to steadily decrease in the other
time-direction. But such asymmetry was unlikely since the reversible algorithm was
completely time-symmetric. So any artifacts that appeared could not grow unbound-
edly; they remained small relative to the desired wave data.

The advantages of reversibility in physical simulations are discussed further by
Margolus [115]. Note however that these advantages can be gained as long as the
simulation is simply reversible at the relatively high level of its state-update rule. The
low-level instructions and circuits in the computer need not be individually reversible
to obtain this improved simulation stability, although we saw in chapter 6 that doing
so confers an efficiency advantage in large parallel systems.

10.6 Alternative applications: Conclusion

Pure reversible computing has possible applications in areas such as verifiable com-
putation, intrusion detection and data protection, program debugging, transaction
processing, and physical simulation. However, in most of the cases we have considered



10.6. ALTERNATIVE APPLICATIONS: CONCLUSION 255

so far, it seems that the same benefits that could be achieved using total reversibility
could be achieved using other, perhaps simpler, means as well; thus most of these
alternative applications are not, in and of themselves, convincing justifications for
the use of reversible computing technology.

However, if one has constructed a reversible system for other (e.g., thermody-
namic) reasons, then it is interesting to note that the various above capabilities fall
out as a side effect. But we must remember that these alternative applications apply
only if the system maintains full logical reversibility, but as we have seen in previous
chapters, depending on the computations being performed, full reversibility may not
be desirable from an asymptotic cost-efficiency standpoint. Even in our own reversible
3-D mesh model, the machine is allowed to be irreversible on its outer surface at least.
Unless free energy is very expensive in a given application, it will probably be cheaper
to generate some amount of permanent entropy and store it in the external universe,
than it is to provide enough reversible digital storage so that a very long computation
that is not inherently reversible can still be run perfectly reversibly.

Other applications for pure logical reversibility may yet be discovered, but at
this time it appears that the most promising application of reversible computing
technology will remain its selective use in making computation more cost-efficient by
various measures; thus, that application remains the focus of our research.



256 CHAPTER 10. ALTERNATIVE APPLICATIONS FOR REVERSIBILITY



