Chapter 2

Physical constraints on
computation

In this chapter we briefly review some of the important fundamental constraints that
physical law places on computational capabilities. These constraints will serve as the
basis for the arguments in chapter 6, which will establish that reversible models are
necessary for permitting the maximum possible computational power in the limiting
technology.

Most of existing computer science theory today deals not with physics, but with
abstract realms of pure mathematics, exploring a plethora of different models of
computation having wildly varying capabilities. Sometimes these theoretical models
have capabilities substantially different from those of physics as we know it.

But real-world computers are physical devices, and their ultimate potential capa-
bilities are defined not by some arbitrarily-chosen model, but rather by the hard facts
of physical law. Unfortunately, physics is not yet completely understood (witness the
lack of an accepted unification of quantum mechanics with general relativity), and
even those parts that are well understood are not usually described in terms that
facilitate the use of physics itself as a model of computation.

However, physics does constrain information processing in a number of important
ways that can already be identified with fairly high confidence.

2.1 Propagation speed limits

The most obvious physical limit important to information processing is the lightspeed
bound for the speed at which information may propagate through space.

Physical dynamics, as currently understood, proceeds purely through local inter-
actions; there is no “action at a distance.” Even gravity, thought by Newton to be
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32 CHAPTER 2. PHYSICAL CONSTRAINTS ON COMPUTATION

an instantaneous force, is now understood, in the context of general relativity, to
propagate through space at only the speed of light, ¢ &~ 3 x 10 m/s.

Even the quantum-mechanical systems that are sometimes interpreted as demon-
strating “spooky action at a distance” (such as separated EPR pairs), can be ex-
plained instead in terms of local interactions. As we will review in chapter 4, quantum
dynamics is based on an “amplitude function” which is a function of the global state
of a system (the whole universe if you like). This leads to a statistical behavior that
may at first appear to require nonlocal interactions, but the wavefunction actually
evolves over time through a transformation (the Hamiltonian) that can be expressed
as a composition of interaction terms that are entirely spatially local.

In general, due to the locality of underlying physical law, all influences are re-
stricted to traveling, at most, at the speed of light. Thus, the physical transmission
of information in a computer is limited to this speed as well.

This bound is “tight” in the sense that it is, of course, already achieved in practice
in our ubiquitous telecommunication systems, and in optical interconnection networks
in some computers. Signals in typical electrical transmission lines travel a bit slower,
about half the speed of light. But propagation times are still linear in the distance
traveled.

One important exception is that signals in low-inductance, resistive wires (such
as the wires on integrated circuit chips) do not actually travel at constant speed, but
rather, for long wires, require propagation time that is proportional to the square of
the length ¢ of the wire, in accordance with the diffusion equation. This unfavorable
scaling presents problems in integrated circuit design today. However, even with
current technology, this #2 scaling is not inevitable, but can be avoided through simple
schemes such as periodic re-buffering of the signal.

2.2 Information density limits

Another important constraint for computation results from physical limits on the
amount of information that can be stored within a given volume of space (such as
memory in a computer). We can say with confidence that some such bounds do exist,
but unfortunately their exact value is hard to determine. However, these bounds will
be very important in our later arguments about the advantages of reversibility, so we
will now take some time to look at the various possible answers in some detail.
Fundamental quantum mechanics appears to dictate a particular finite upper
bound on the total amount of information (including entropy) that can be contained
in any system, as a function of the system’s physical volume and the amount of energy
it contains. By the amount of information in a system, we mean simply the logarithm
of the number of states that the system could occupy, given some definition of what
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constitutes “the system.” (See §2.5.2.) According to Margolus (1996, [118]),

[The question of the number of states] is really a very old question: the
correct counting of physical states is the problem that led to the intro-
duction of Planck’s constant into physics [137], and is the basis of all
of quantum statistical mechanics. The question can be answered by a
detailed quantum mechanical counting of distinct (mutually orthogonal)
states. It can also be well approximated in the macroscopic limit [87, 184]
by simply calculating the volume of phase space accessible to the system,
in units where Planck’s constant is 1.

Let us look at some particular information density bounds in more detail.

2.2.1 Entropy bounds from black hole physics.

Some particular upper bounds on information content as a function of system size
and energy are given by Bekenstein (1984, [15]) and by Joos and Qadir (1992, [88]).
Bekenstein’s bounds, which originally came out of his studies of the entropy of black
holes (e.g., [14]), are fairly loose, in the sense that his bounds may conceivably be
much higher than the maximum information content for systems other than black
holes. One bound Bekenstein gives ([15], eq. 1) is:

S < 2nER/hc, (2.1)

where S is the capacity for entropy or information (in natural log units or nats), E
is the total energy (including rest mass-energy) in a system, and R is the radius of
the system.

The maximum mass-energy for a system of given radius is of course achieved only
in the case of black holes, since anything with a black hole’s mass within a black
hole’s radius has such a high surface gravity that it s a black hole. The radius of a
black hole is proportional to its mass M according to R = 2GM/c? (Wald 1984 [183],
p. 124, eq. 6.1.45), and so the energy of any system of that radius is bounded by the
black hole rest energy,

E<SR (2.2)

where G is Newton’s gravitational constant, G = 6.67259 x 107! Nm? /kg?.
Combining (2.1) and (2.2), we have

3
S < %RQ. (2.3)
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In other words the entropy of a system is ultimately bounded in proportion to its
minimal surface area, rather than to its volume! This is somewhat counter-intuitive.
Perhaps one way to understand this result is the following: Imagine growing a black
hole up from a tiny size by throwing objects into it. Due to a gravitational time
dialation that stretches to infinity as objects approach the horizon, items we throw at
the hole never actually enter it from our point of view; the objects just keep getting
closer and closer to the event horizon “surface” of the hole (and the light from them
gets more and more red-shifted). From that point of view, all the information about
everything we throw into the hole is held at the hole’s surface. So it is perhaps
understandable that the horizon area should scale up in proportion to the amount of
information held there.

If this is indeed the case, the information density at the event horizon given by
Bekenstein’s bound is truly enormous: 1/4 nat of entropy for each square of area
that is 1 Planck length, or fp = \/Gh/c3 = 1.62 x 1073 m, on a side. That is, an
astounding 2.21 x 1070 bits per square meter, or 2.21 x 10 bits per square Angstrom
(roughly atom-size) area. (It’s probably safe to say that DRAM densities won'’t reach
that level for a while!)

In any case, black holes are certainly not a very good place to store information
that we might want to retrieve later, although they might conceivably be a good place
to dump unwanted entropy. Macroscopic black holes have intrinsic temperatures near
absolute zero, and in contrast to most systems, they get cooler as you dump more
energy and entropy into them! (Cf. eq. 26 in Smith’s paper [152], and his references
to Hawking, his source.) So a black hole would be a sort of natural heat sink, cooler
even than the cosmic microwave background which is at ~3 K. But for the foreseeable
future, black holes will remain rather hard to come by, so it behooves us to also
consider where we stand without them.

2.2.2 Entropy bounds for a photon gas.

Much tighter bounds can be given for the entropy of normal (non black-hole) systems,
given additional assumptions about their composition. This is done in Bekenstein’s
paper [15], as well as in papers by Joos and Qadir [88] and Smith (1995 [152]) and
the related literature. Smith argues that for high-temperature systems (above 1000
K or so, roughly the melting point of ordinary solids), the maximum entropy density
for a given mass density is approximately achieved (within a small constant factor)
by a thermal photon gas, in which the entropy density (entropy per unit volume) is
([152], eq. 22)

_ 16V (E . %)3/4 (2.4)
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where M/V is the energy density of the photon gas, in mass units.

This equation would appear to allow arbitrarily high entropy densities to be
achieved by raising the temperature and mass-energy density, except that actually
of course the energy density is itself limited as a function of a system’s size, since
beyond a certain point the system would form a black hole.

A full general-relativistic analysis of the situation would of course be very complex,
but as a simplifying first approximation, let’s derive the maximum entropy density of
a sphere of photons without taking GR into account, except in the sense of allowing
it to set a maximum energy for a system of given radius.

Using eq. (2.2) we find that a sphere of photons of (nonrelativistic) volume ¥V =
%wR?’ must have energy density

E 3ct

Z < 2.5

YV ~ 81 G R? (25)
i.e., mass density

M 3c?

— < — 2.6

YV ~ 81 GR? (26)

to avoid gravitational collapse. Substituting this into eq. (2.4), we find that non-
black-hole entropy is bounded by

64 3r\¥4 o 3
- ([Z£ _ - p3/2
S S G ( 8) OECk 2.7)
R\ 2
~ 2.889 (E) (2.8)

where /p is again the Planck length. This bound, interestingly, scales with increasing
radius even less rapidly than in the black hole case, where we had S = 7(R/¢p)%.
Incidentally, the ratio Sgn/Spg between black-hole entropy and maximum photon-
gas entropy in this (admittedly simplistic) analysis is

SBH R
— ~ 1.0874/—. 2.9
Spa V (29)

This ratio is required to be > 1 by Bekenstein’s argument that black holes always
maximize entropy, which implies R 2 0.846 /p, perhaps suggesting that R ~ 0.846 /p,
or thereabouts, is a minimum physical length in some sense. The entropy of either a
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black hole or maximum-energy photon gas sphere having that radius is ~ 3.24 bits,
suggesting perhaps there is an absolute upper limit to entropy density for objects of
any size, on the order of ~ 1.28 bits/¢3, or ~ 3.03 x 10® bits/cm?®. Of course this
density would not be achievable for any object greater than about a Planck length in
size.

But even for larger objects, our new bound (2.8), though lower than before, is
still extremely high; for example, an object as large as the Earth could still have an
average entropy density of 117 Gigabytes of information per cubic Angstrom without
exceeding this limit.

Given this, it is probably necessary to back a little further away from fundamental
theoretical arguments, if we want to achieve any sort of meaningful bound.

2.2.3 More reasonable mass densities.

One observation is that if we rule out burying our computers inside star-sized or at
least planet-sized masses of gravitating material, then there is probably no way to
apply enough pressure to get their average mass density to be much greater than in
ordinary solids. At a mass density of 10 g/cm?® (about that of lead), eq. 2.4 gives only
36 kilobytes per cubic Angstrom.

However, achieving even this much more reasonable entropy density using photons
requires extremely high temperatures. The temperature of a photon gas of energy
density pg is (solving Smith’s [152] eq. 13 for T'):

T = af PEC (2.10)

4osp
where ogp is the Stefan-Boltzmann constant,

2 14
7 kg

= ——— 2.11
60 c2h3 ( )

0sB

Achieving a mass density of 10 g/cm® (That’s one heavy field of light!) thus

requires a temperature of roughly 10° Kelvins. It is difficult to see how such high

temperatures can possibly be maintained at ordinary pressures without completely

destroying any structure the computer might have. Thus we need to move to still
more conservative estimates.

2.2.4 More reasonable temperatures.

For example, at a more feasible temperature such as the melting point of copper,
1356 K, the energy density of light is only 2.56 x 107 J/cm3, so it is essentially
weightless, at 2.85x10723 g/cm3. Moreover, the entropy density is then only 0.74 bits



2.2. INFORMATION DENSITY LIMITS 37

per cubic micron. (This makes sense since ordinary visible light, emitted by glowing
but still-solid blackbodies, has wavelengths on the order of a micron.) This clearly is
much less than the entropy density of the hot copper atoms themselves, which exist
at a density of roughly 0.08 atoms per cubic Angstrom. So at temperatures where
any useful solid structure can exist, the energy density of light is very low, and it is
also far from maximizing the possible entropy density.

What is the entropy density in an ordinary solid material like lead? It may
conceivably be on the order of kilobytes per atom, as we calculated above for light of
the same density, if information about the nuclear structure is included in the count—
after all, Smith’s argument tells us to count the total mass-energy of the system in
computing his bound.

However, without a reliable way to probe the structure of nuclei, most of this
information, even if it is there, will be inaccessible as a place to store information for
later retrieval. The nucleus may nevertheless be capable of absorbing some amount
of thermal information (heat entropy), but I have not researched whether a figure
as high as 36 kilobytes of entropy at normal temperatures is consistent with what is
known about nuclear structure and the heat characteristics of atomic materials. If
variability in the nuclear structure does not make a large contribution to total atomic
entropy, then the actual maximum entropy per atom in normal solids is probably
much lower than the 36 kilobyte figure.

However, at room temperatures, entropy density is probably not much lower than
on the order of 1 bit per atom (or per cubic Angstrom), since at those temperatures
atoms have enough energy to jiggle around a little, and so will have on average
1 nat (kg) of entropy (kg7 energy) per vibrational degree of freedom. For three-
dimensional vibrations, there are six degrees of freedom, three of position and three
of momentum, so this gives 6 nats/In2 = 8.66 bits per atom. There should also
be entropy contributions from variability in the nuclear spin orientation, and from
electrons that are free to roam in molecular orbitals or in conduction bands. But
most atoms are somewhat larger than 1 A in volume, so 1-10bit/ A3 is still probably
the right overall order of magnitude for entropy density in normal materials.

A more detailed (but still fairly crude) analysis based on actual thermochemical
data from the CRC handbook [107] suggests that experimentally, at atmospheric
pressure, the entropy density for copper is indeed found to be in the rather narrow
range 0.5-1.5 bits/ A3 for a wide range of temperatures from room temperature up to
its boiling point, and moreover that the entropy densities in a variety of other pure
elemental materials are also close to this level. For mixtures, we would expect the
entropy density to be potentially greater, due to the additional degree of freedom
implicit in choosing what species of atom resides at any given location.

Table 2.1 summarizes the above results by giving the average entropy density of a
sphere of radius 1 meter that contains the maximum entropy according to the various
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Upper bound on
entropy density
Black hole 4.14x10* b/A3 | Need mass ~ Saturn; can’t get info. out
Non-black hole | 1.53x10%2b/A? | Requires nearly as much mass

Normal density | ~ 3x10°b/A3 | May require billion-degree temperatures
Atomic matter ~1-10b/A3 | Hand-waving estimate.

Material Caveats

Table 2.1: Theoretical limits on entropy or information density for a 1-meter-radius
sphere, in various scenarios. The radius is important because in the high-gravity
regime, the maximum average entropy density decreases with increasing size. It is
difficult to know which of these limits, if any, might someday be approachable in real
computational systems.

bounds. (Keep in mind that entropy actually scales less rapidly than volume for the
systems near black-hole mass.)

This concludes our discussion of information density limits. Although we were
unable to determine precisely the maximum density that was possible, we saw that
entropy density does appear to ultimately be limited by some function of energy
density, such as in eq. (2.4). Furthermore, much of a system’s rest mass-energy
may not count for purposes of this calculation, if it is energy that is tied up in an
inaccessible nucleus, for example. At this stage I believe it would be premature to
predict that a density greater than say ~ 10 bits per cubic Angstrom could ever
actually be achieved for stable, retrievable storage of information. I would need
more information before I could make a similar statement regarding thermal entropy
densities.

2.3 Information flux rate limits

Another physical quantity of importance in computation is the maximum flux (rate
of flow per unit area) of information or entropy through any surface in the computer.
We should point out that one class of bounds on this quantity immediately follows
from the bounds of sections 2.1 & 2.2, as follows.

Suppose a material having entropy density ps passes through of surface at velocity
v. Then the entropy in that material is crossing the surface with exactly the flux
Fs = psv. Section 2.2 gave us bounds on the maximum value of pg, and the maximum
v is of course ¢, so this leads immediately to corresponding bounds on Fs.

One caveat is that in normal materials traveling at near the speed of light, the
relativistic length contraction of the material should increase its effective entropy
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density, according to

ps = Vps (2.12)
where

1
T Towje

is the normal relativistic correction factor (¢f. [52]). We assume that a given chunk of
material maintains the same entropy at high speed, but is compacted into a shorter
space. This would seem to allow arbitrarily high fluxes to be attained.

However, in addition to this compression into a smaller volume, the chunk will
also have its mass-energy increased (in the reference frame of the stationary surface
through which the material is passing) by another factor of 7, so that the mass-energy
density of the moving material will actually scale as

(2.13)

P =V Pu (2.14)

and so, solving (2.14) for v and substituting into (2.12), the entropy density actually

scales as
! /
s _ [P, (2.15)
Ps M

i.e., the increase in entropy density only scales as the square root of the energy
density. So asymptotically, we could thereby do no better than with light, which
already travels at lightspeed and where the entropy density scales with the energy
density to the 3/4 power, according to eq. (2.4). So the maximum entropy flux we
derive from our entropy density bounds is not exceeded in materials traveling at
relativistic speeds, if the energy invested in accelerating the material to that speed is
taken into account.

Smith 1995 [152], p. 6, eq. 7 gives an explicit formula for the maximum entropy
flux Fs using light, given an energy flux Fg:

4
Fs < gaé{;FEM (2.16)

This is the formula for the entropy flux emitted by a blackbody that is at the appro-
priate temperature to emit energy flux Fg. As Smith points out, there is a simple
proof that this is the maximum entropy flux that can be transmitted with photons
given that energy flux. Imagine using photons to continuously transmit energy and
entropy through a small aperture into an insulated box (a perfect blackbody). The
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interior of the box will heat up, and, at equilibrium, will radiate energy out of the
aperture exactly as fast as it is coming in (since energy is conserved), and will also
radiate entropy out at least as fast as it comes in (since global entropy cannot de-
crease). Therefore the entropy flux of the thermal blackbody radiation coming out of
the box upper-bounds the achievable entropy flux of the light coming in, which may
be of any form (coherent, etc.).

At this point we could go on to calculate upper bounds on information flux at any
energy based on the black hole limits to entropy density that we discussed in §2.2.
For example, for a postulated minimum-size (Planck-length scale) black hole moving
at near the speed of light, we estimate entropy flux would be around 10'% bit/s-cm?.
However, this sort of bound is rather far from anything meaningful, since it does not
represent a sustainable rate, or a rate achievable over an area much larger than a
Planck length—Dblack holes placed near each other would rapidly conglomerate into
a larger black hole with lower entropy density. Even if we were so bold as to allow
for the use of such exotic objects as black holes as computer components, properly
accounting for gravitational effects in such systems would make our scaling analysis
of chapter 6 much more complex. So instead, for the rest of the thesis, we will ignore
high-gravity situations, and instead focus only on the bounds obtained for normal
matter.

2.4 Computation rate limits

In chapter 6 we will examine in detail how certain kinds of limits on computation rates
for irreversible and imperfectly-reversible computers can be derived from the limits
on information flux we saw in §2.3. However, there are other limits on processing
rates that apply even to perfectly reversible computers.

In particular, there is the result of Margolus and Levitin (1996, [118]) that the
fundamental laws of quantum mechanics imply that the maximum rate v, at which
a system at an average energy F (above some minimum energy Fj) can transition
between distinguishable (i.e., orthogonal) states is

v, < A(E — Ey)/h. (2.17)

This bound is derived in a totally general way, and applies even for systems traveling
at relativistic velocities. Insofar as any computational operation requires that some
part of a system change from one distinct state to another, Margolus and Levitin’s
bound is an absolute upper limit on the rate at which operations can be performed
within a computer.

Further, Margolus suggests [personal communication] that for systems in which
not all the system’s energy is accessible for computational purposes (for example, if
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some of it is in the form of heat, or tied up in rest mass), it is the free energy of the
system, rather than its total energy, that determines the maximum rate at which the
system can transition between useful computational states according to eq. (2.17).

As a simple example, a single electron excited to a potential of 1 Volt above its
ground state contains 1 eV of accessible energy and thus can never perform com-
putational steps (or any state change) more rapidly than at a rate of 4 eV/h =
9.67x 10 Hz, or about once per femtosecond.

2.5 Reversibility of physics

Another physical constraint of great importance for computation is that all physical
dynamics is reversible (invertible), that is, it is deterministic looking backwards in
time. (See figure 2.1.)

Quantum mechanics is sometimes described in nondeterministic terms, but it is
actually perfectly deterministic (and reversible) at the level of the evolution of the
quantum wave function. The apparent nondeterminism of quantum events can be
interpreted as merely a subjective, emergent phenomenon that is predicted perfectly
well by the underlying deterministic theory [57].

One possible exception to reversibility may be black holes, which, in some the-
oretical arguments, are found to destroy information (see Preskill 1992 [138] for a
review of the situation). However, there is currently no accepted, complete theory
of black hole physics from which we could draw indisputable theoretical conclusions,
and there is no experimental evidence that supports information loss. The truth of
the issue is still being actively debated (e.g., [55, 120]). Moreover, it appears that
some recent developments in string theory would allow reversibility to be maintained,
if the theory is correct (Myers 1997, [130]).

In any case, it seems to be the general consensus among physicists that reversibility
is certainly maintained in at least all areas of mechanics that do not involve extreme
situations such as black holes. So regardless of the black hole situation, physics
remains reversible for all practical purposes.

2.5.1 Physical reversibility and information erasure

Another way of characterizing physical reversibility is that two states (of a classical
system, or of a quantum wavefunction) that are initially distinct can never evolve to
become the same state at some later time. (In the language of functions, the system’s
transition function over any time period is one-to-one/bijective/invertible.) Conse-
quently, the number of possible states of a system is irreducible over time; we say that
the system’s state space is incompressible. The invertibility is a simple consequence
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(Forward) Determinism: Reverse Determinism:
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Figure 2.1: Forward and reverse determinism in physics. Normal forward determinism
means that a single state cannot evolve to become one of two different states at any
single later time, and similarly, reverse determinism or just reversibility means that
two initially-distinct states cannot evolve to become the same state at some later time.
Physics is both forward and reverse deterministic, and so the possible trajectories of
a system through configuration space-time never intersect.
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of the fact that in any standard description of physics, such as Hamiltonian dynam-
ics, an isolated physical system evolves according to a time-differential equation. The
differentials apply equally well in either time direction.

[Note: Our “incompressibility of state space” concept is closely related to, but not
the same thing as, another property that is shared by all systems with Hamiltonian
dynamics, namely that their “phase space volume” is incompressible. However, we
will not delve into those rather subtle distinctions here, as they are not important for
our immediate purposes.]

In any event, the incompressibility of state space has an important consequence
for information erasure within a computer, first described explicitly by Landauer [97].
Whenever we attempt to irreversibly erase a piece of information from a computer,
that information is not truly destroyed, but instead is simply transferred to another
part of the system, typically to the uncontrolled thermal state of the computer and
its environment. We explain in more detail with reference to figure 2.2.

The figure illustrates a 1-bit piece of computational state within a computer. We
wish to perform an “erasure” operation, which we may characterize as an operation
that transforms that bit to a zero regardless of whether it was originally a 0 or a 1.

In addition to the bit in question, the computer also contains some amount of
other information in the form of other bits in memory, together with the entropy of
its thermal state. Let A denote the number of possible states of the system, apart
from the bit in question.

We want our “erase” operation to operate correctly, independently of which of the
2N possible states the combined system is in. Due to physical reversibility, each of
these 2N states must be mapped to a distinct state after the erase operation—but
all of those states have value 0 in the erased bit. Thus there must be 2N possible
states of the rest of the system, after the operation. The amount of information in
the rest of the system has therefore increased by 1g 2N — g N = 1 bit.

So the presumably erased information has not really been destroyed, but is still
present somewhere, either in some other part of the computational state or in the
thermal state. The original value of the bit could in principle be retrieved by, for
example, running the laws of physics backwards.

However, if the information has been lost in a sea of thermal chaos, then in practice
there is no way to reconstruct the original value of the bit.

2.5.2 Reversibility, entropy, and the second law

We now see how physical reversibility can be understood to imply the second law of
thermodynamics.

The second law of thermodynamics states that the total entropy of any closed
system cannot decrease. What is entropy? Quantitatively, it is the logarithm of the
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Figure 2.2: Information “erasure” under reversible physics. In order to erase an
unknown bit and thereby reduce the number of possible digital states of the computer
by a factor of 2, one has to make up for this by increasing the number of possible
thermal states of the rest of the system by a factor of 2.
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number N of possible states of a system. The base of the logarithm determines the
unit of entropy: if the base is e & 2.718. .., the base of natural logarithms, then we
might call the corresponding unit of entropy 1 nat, equal to Boltzmann’s constant
kg. If the base is 2, then the unit of entropy is called 1 bit. Thus, 1 bit = (In 2) nat ~
0.693 nat.

If entropy is the log of the number of possible states, what, then, do we mean by a
“possible state?” This depends entirely on the context, specifically on how we define
what constitutes a legal example of “the system” in question.

However, even with this broad definition of entropy, we can already make some
meaningful statements about entropy in connection with reversibility. First, it is
clear that if the entropy of a system were to decrease over time, then the system
would not be reversible, because we would have an example of multiple possible
initial states evolving to become a smaller number of resulting final states, violating
the incompressibility of state space that is implied by reversibility. Therefore, the
reversibility of a system immediately implies that its entropy can never decrease over
time.

There is a similar connection between entropy increase and determinism. In a
deterministic system, state space is “inexpandable” since a given state can not evolve
to more than one possible new state in a given amount of time. Thus the number
of possible states cannot increase, in this strict sense, and so deterministic systems
undergo no “true” increases in entropy.

However, even if a system is deterministic, we may find it convenient to label more
and more states as “possible” over a system’s time evolution, simply because, given an
incomplete model of a system’s initial state, we may lose track of the exact trajectories
of the initially possible states over time, and so many additional states may become
possible over time from the point of view of the model. In such circumstances, it is
convenient to say that entropy increases. An example is the situation in figure 2.2
(p. 44). Suppose we have constructed an initial condition in which only the “1” value
of the bit is possible, so the entropy before the “erase” operation is just In . But
since we fail to model what becomes of the information that the bit is 1 after the
“erase” operation is performed, the entropy of the system under the model increases
to In2N. This increase will happen whenever a non-entropy bit turns into thermal
form, because the evolution of the micro-state of a thermal system is, by definition,
un-trackable by us.

We thus can state the following principle: Total entropy increases (permanently)
by at least 1 bit’s worth any time a bit that is originally non-entropic moves to reside
in a thermal system. Furthermore, this happens whenever a digital bit is erased,
unless (a) the bit was already entropy, in which case moving it to thermal form does
not necessarily increase total entropy, or (b) the bit is canceled out instead, by un-
computing it from other bits of state with which it is correlated.
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2.5.3 Entropy and energy

As we just saw, the second law of thermodynamics states that the entropy of a closed
system cannot decrease over time. We saw that it also cannot increase, except in the
sense that our incomplete model of the system may lose track of what happens to a
state over time, so that more states become “possible” from the point of view of the
model. However, entropy can be moved from one subsystem to another.

Correspondingly, the first law of thermodynamics states that the energy of a closed
system can neither increase nor decrease, but can only be moved from one subsystem
to another.

How are these conservation laws for energy and entropy related? We find empiri-
cally that in order to increase or decrease the entropy of any subsystem (not counting
increases due to deficiencies in our model), we generally must also increase or decrease
its energy (given a closed, constant-volume system). For sufficiently small changes in
entropy, we find that the change in energy required is proportional to the change in
entropy. The constant of proportionality is called the temperature T of the subsystem.
Formally,

T = 0E/dS. (2.18)

This is a perfectly valid definition of temperature, in terms of the relation between a
system’s energy and its number of states.

Under this definition, 1 Kelvin of absolute temperature is definable as a require-
ment of ~ 1.38x 10723 J of energy per 1-nat increase in entropy. A nat of entropy
can therefore also be expressed in units of energy per unit temperature, such as
1.38x1072 J/K. In such form, 1 nat of entropy is often referred to as Boltzmann’s
constant kg.

From all this, it follows immediately that the amount of energy E that must be
added to system in order to double its number of possible states is just

E = kgTIn?2 (2.19)

since kgln 2 is just a 1-bit increase in entropy, and multiplying by the system’s tem-
perature just converts this entropy increase to the required change in energy, by the
definition of temperature.

2.5.4 Logical irreversibility and energy dissipation

We saw in section 2.2 that in any system with particular size and energy there is a
consequent upper bound on the entropy that system can contain. If a given system is
found to contain less entropy than the maximum given the amount of energy in the
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Figure 2.3: Venn diagram of entropy and information. Any system of finite size
and energy has a finite maximum entropy; however, if the system expands without
bound, the maximum entropy may also. The maximum entropy may be considered
the total amount of information of all kinds in the system. However, much of it may be
redundant and cross-correlated. Bits of information that are uncorrelated, or whose
correlations have become lost beyond all hope of recovery, are entropy, which can only
increase in a reversible universe. Some portion of the system, and the information in
it, is within our ability to manipulate and control, such as bits within a computer.
These bits, too, may either be entropy or not, depending on our ability to know their
correlations.

system, then that must mean our model of the system is imposing further structure
on the system, ruling out some of the states that would otherwise be possible.

For such a system with non-maximal entropy, only a portion of the energy of the
system is actually needed for permitting the entropy that is actually present. This
portion of the total energy will be referred to as the amount of dissipated energy in
the system. The rest of the system’s energy will be referred to as its free energy. The
difference between the entropy of the system and its maximum entropy will be termed
the negentropy or information capacity of the system. Some of this information
capacity may become allocated for storing computational information. (See fig. 2.3.)

As we discussed in §2.5.2, even in the context of a perfectly deterministic under-
lying physics, the entropy of a system can be seen to increase, through a failure to
completely model the determinism inherent in the system’s physical evolution. When
this happens, the amount of the system’s energy that is needed to support this en-
tropy will increase by some amount, and the free energy will decrease by the same
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amount. We say this amount of energy has been dissipated.
We are now in a position to accurately state and explain the central statement on
which the field of reversible computing is based:

Landauer’s principle. The irreversible loss of 1 bit of computational information
requires the dissipation of kgT In2 energy, where T is the temperature of the sub-
system in which the lost bit finally ends up. By the “irreversible loss,” we mean
that some bit of computational information (not a bit that is already entropy!) be-
comes transformed in such a way that our computational models can not track it,
for example by becoming mixed up with parts of the system whose state is already
thermal, or unknown. Thus by definition the bit has become entropy, and the entropy
of the system as a whole is increased by 1 bit. This increase is eventually reflected
in some subsystem at temperature 7', and by definition of temperature, the energy
of this subsystem must be increased by kg7 In2. The energy invested in the entropy
increase is heat. If 7" is the lowest available temperature, then this energy must come
out of the free energy, because all the dissipated energy in the system is already fully
occupied with containing the pre-existing entropy. Thus the free energy is decreased
by kgT'In 2.
The above principle was first explicitly conjectured by Landauer [97].

Note that since 7" is the temperature of the system where the entropy finally ends
up, not the temperature of the device that held the entropy originally, cooling a
computer cannot in the long run decrease the total energy dissipation required to
erase bits, if the dissipation in the cooling system is taken into account. The entropy
that is generated can not build up indefinitely in the cooling system, or else it would
not stay cool. Instead, it ultimately ends up in some natural thermal reservoir in
the environment. The coolest thermal reservoir of effectively unlimited capacity that
might be available in the foreseeable future is the interstellar microwave background,
at a temperature of ~2.73 K. Thus, no process that generates entropy can, in the
long run, sustain an energy dissipation cost less than kg(2.73 K)In2 ~ 2.6 x 1072 ]
per bit generated, and this can only be attained if the entropy can be transmitted
directly into space. For terrestrial systems that use the atmosphere as their thermal
reservoir, the relevant temperature is in the neighborhood of room temperature or
300 K, for a minimum energy dissipation of ~ 3x1072' J/b.

2.6 Quantum computation
One area in which physics may actually constrain computation less than might be

expected is in the possibility of quantum computation (cf. [60, 47, 23, 22, 21, 149,
146]), that is, computation using large, complex, coherent superpositions of states. If
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it can be implemented successfully, quantum computation seems likely to be strictly
asymptotically faster than classical computation on certain problems, by as much as
an exponential factor. But it is not yet known if quantum computation would be
beneficial for purposes other than obsoleting the RSA cryptosystem, or simulating
physical quantum systems. Still, if the recent progress on implementing quantum
computers [56, 168, 35, 39, 76, 40, 158, 49, 150, 10, 34] eventually culminates in
success, then we would certainly like to consider quantum computation as a physically
possible means of computation. But even a quantum computer would still need to
obey the fundamental constraints discussed above affecting the maximum density and
propagation speed of information.
We will review quantum computing in more detail in chapter 4.

2.7 Physical constraints—conclusion

This concludes our discussion of fundamental physical limits on computation. Ta-
ble 2.2 summarizes the limits we discussed, and the presumed effect on the form of a
physically-realistic model of computation, which we will discuss further in ch. 5.

In chapter 6 we will see how these limits affect the scaling of computation speeds
in reversible and irreversible computers. But first, in the next chapter, we review the
non-physical theoretical underpinnings of reversible computing, and show that in an
imagined non-physical computational framework, reversibility leads to unfavorable
scaling. The contrast between that result and the results of chapter 6 underscores
that traditional non-physical theoretical frameworks for computation are inadequate
for realistically modeling the advantages of reversibility, and thus, more sophisticated
models of computation that take the above-described physical constraints into account
are required for a correct analysis. Such models will be discussed in chapter 5.
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Fundamental Constrained Quantitative Impact on
principle quantity Symbol | constraint our model
Quantum Entropy 0s < 1-10 b/A3? Finite state/
mechanics density processor
Entropy flux Fs < psv Finite info.
flux
Rate of state vy <A4(E - Ey)/h Finite oper.
change frequency
Locality Info. prop. v <c~3x10°m/s | Mesh arch.
velocity (Vitényi ’88)
3-dimensionality | Connec- O(t?) 3-D mesh
of space tivity
Micro- Entropy AS > 0 always, Logical
reversibility, change > 1 bit/bit erasure | reversibility,
thermodynamics | Energy AFE > 0 always, entropy
dissipation > kT In2/eras. accounting
Frictional Entropy ks >0 b/Hz? Time-prop.
effects coefficient reversibility

Table 2.2: Fundamental physical constraints on computation, and

their effects on

the form of a physically-realistic model of computation. The value of the bound on
ps is very uncertain, but the assertion that some such bound exists is not. For any
particular computing technology through the foreseeable future, there will generally
be much stricter limits than the above on most of these quantities.




