Chapter 4

Quantum computation

In chapter 2 we saw various ways in which fundamental physics limits what we can do
with computers. But even within these limits, physics may also afford new, previously
unforeseen opportunities.

In this chapter we review the field of quantum computation, which studies a par-
ticular new kind of computation that takes advantage of known physical principles
in a new way which appears to be fundamentally more powerful than the kinds of
computation employed in any existing computers. Quantum computing may or may
not turn out to be practical in the long run, but its eventual feasibility has not yet
been conclusively ruled out. Therefore it is important for us, when considering the
ultimate limits of computing, to at least be aware of the ways in which quantum
computing may potentially belie the conventional wisdom about what is possible.

Moreover, the basic operations used in quantum computation are inherently re-
versible, and thus constitute a potential realm of application for some of the reversible
algorithm techniques discussed later in this thesis.

Quantitative Church’s Thesis. The “Quantitative Church’s Thesis” [176, 175]
claims that Turing machines are as efficient as any realistic computer, within a poly-
nomial factor. However, Feynman [59] has pointed out that Turing machines seem
to be unable to efficiently simulate quantum physics; that is, they seem to require
an exponential slowdown to simulate it (although this has not been proven). This
leads naturally to the supposition that a computer that was designed to take full
advantage of quantum physical principles might be found to be exponentially faster
than a Turing machine, at least for some problems, thus disproving the Quantitative
Church’s Thesis. Such a development could lead to eventual practical applications,
if and when such quantum computers become buildable.

Shor’s Factoring Algorithm. However, this idea remained pure speculation until
the last several years, when a series of papers on the power of quantum computers
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[47, 23, 22, 21, 149] culminated in Peter Shor’s 1994 proof [146, 147] that a (somewhat
idealized) quantum computer could factor large integers in polynomial time in the
number of bits n in the integer. This was an astounding discovery, since mathemati-
cians throughout history have searched for an efficient way to factor numbers without
success, since at least the time of Euclid. The best known classical algorithm [102]
takes exponential time.!

4.1 Some fundamental quantum concepts

Hilbert spaces. The most important thing to understand about the difference
between the quantum and classical paradigms of physics is that in the quantum
paradigm, the classical notion of the state of a system is not sufficient to describe the
dynamical evolution of the system. In fact, if S is the space of possible states of a
classical system, then a corresponding quantum description of the system involves a
consideration of the much larger space of functions from S to the complex numbers
C, i.e. the space H = C?, to use the set theory notation. The number of dimensions
of H is equal to the number of elements of S. This space H is called the Hilbert space
of the system.

Amplitudes and probabilities. So again, the quantum state of a system consists
of a function ¥ : § — C from the classical states of the system to the complex num-
bers. These complex numbers are called amplitudes and their physical significance
is that the square of the absolute value of the amplitude of a classical state z is in-
terpreted as the probability that the system would be found to be in state x if the
system were observed, i.e. Pr(z|¥) = [¥(x)*> = R(¥(x))? + (¥ (x))?, where R(z)
and J(z) represent the real and imaginary parts of the complex number z, respec-
tively. A simple probability distribution over classical states would suffice instead, if
a static description of the system were all that was required. But if the dynamical
evolution of the system is to be modeled in a quantum-theoretic way, the full power
of a complex function is necessary; the probabilities alone do not suffice to describe
how a quantum system can change over time. The function from states to amplitudes
is commonly referred to as a superposition of states.

Unitary transformations. The fundamental principle of change in quantum sys-
tems is the unitary transformation. If we imagine the amplitude function ¥ being
identified with a vector of complex numbers indexed by the states in &, then a unitary
transformation is simply a multiplication of those vectors by a transformation matrix
whose inverse equals its conjugate transpose. (To briefly review some definitions from
linear algebra and complex arithmetic, the transpose MT of a matrix M is defined

More precisely, O(exp(n'/?log(n?/?))).
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by M"(z,y) = M(y,z) i.e. the matrix is flipped around its diagonal axis, and the
conjugate M* of M is defined by M*(z,y) = R(M(z,y)) — S(M(z,y))i, that is, the
sign of the imaginary part of each element is negated. The inverse M~! of M is the
matrix such that M~*M = I, the identity matrix.)

A unitary transformation, intuitively speaking, corresponds to a length-preserving
and information-preserving rotation in the vector space. The length-preserving re-
quirement ensures that the total probability of the set of states always remains the
same (1 if normalized), and the information-preserving requirement reflects what
seems to be a universal conservation principle in fundamental physics (which we dis-
cussed in §2.5), namely that all changes are information-preserving on a microscopic
level; or, in quantum-mechanical terms, the complete quantum state (amplitude vec-
tor) of an isolated system at any time determines the quantum state of the system at
all past and future times.

Measurement phenomena. We have already mentioned that a measurement of
the state of a quantum system (or of part of the state) yields a result with a probability
equal to the square of that state’s amplitude. (Or, if only part of the state is measured,
the probability is equal to the sum of the squares of the amplitudes of all the global
states that are consistent with the state of the part being measured.) However, such a
measurement has an apparent side-effect on the system, namely that the probabilities
of all states inconsistent with the observed result drop to zero, and the amplitudes of
all the states that are consistent with the observed result are scaled up accordingly,
so that the total probability over all states remains 1.

In other words, after observing a measurement (that is, allowing the measurement
to affect the outside world), one cannot in practice just undo the measurement to
restore the amplitudes of all states to their original values, putting the genie back
in the bottle, as it were. Instead, the original superposition seems to be effectively
destroyed, and all further measurements on the system will be in accordance with the
new collapsed superposition.

In the traditional Copenhagen interpretation of this phenomenon, this event of
the collapse of the global wavefunction (which would be a non-unitary and non-local
transition) is said to actually occur. But there is an alternative explanation for the
observed phenomena that is, in our view, philosophically much simpler and thus more
plausible. It does not require postulating any new basic principle of “wavefunction
collapse,” rather, the apparent phenomenon of collapse can be seen to follow auto-
matically from the basic nature of quantum mechanics.

This alternative is Everett’s theory of the Universal Wavefunction [57] which says
that regardless of whatever interactions occur between a quantum system and the
external world, these interactions continue to obey unitarity, and the entire system
as a whole (system being studied, plus rest of world) remains in the superposed state



94 CHAPTER 4. QUANTUM COMPUTATION

predicted by quantum mechanics. If the appropriate inverse transformation could be
applied to the system as a whole, the original state could in principle be restored.
In a measurement experiment, if information about the measurement does not leak
out of the measurement apparatus into the outside world, there is no reason why the
measurement, if carefully controlled, cannot be “undone” to restore the original state.
(In fact, recent experiments reported in [189] confirm this.)

However, we do not have control over the quantum interactions that take place
after a photon (say) that is carrying state information leaves an experiment and
strikes, say, an observer’s eyeball; after that interaction takes place, the information
about the state of the experiment gets all mixed up with the states of billions of
particles, and although a superposition is still present, the states corresponding to the
different outcomes of the experiment have drifted so far about from each other through
random interactions with other particles that there is essentially zero probability that
they will ever drift back together to become the same state again, which is necessary
in order for their amplitudes to again add up and interfere with each other. It
doesn’t really matter whether the photon strikes an eyeball or a rock. The different
states corresponding to different outcomes of the experiment drift so far apart from
each other (in Hilbert space) that it is an excellent approximation to treat them as
completely independent and non-interacting. (But if the photon strikes a waveguide
that directs it back into the experiment in a controlled way, that’s different.)

Therefore, within the context of any state in which information has leaked out
and interacted with an uncontrolled, un-modeled external environment, we can ap-
propriately shift to using a model in which the value of this “measured” information
is simply chosen according to the |¥|? distribution, and the amplitudes of the other
states (those that are inconsistent with the leaked information) are zero. The only
alternative would be to include all of the zillions of interacting particles of the exter-
nal environment in one’s model of the state of the system; this alternative is of course
impossible for any “environment” that is not itself a known and carefully-controlled
quantum system.

In any case, to avoid confusion, a more precise statement of the “measurement
phenomenon” described earlier would define a measurement as any event in which
state information about a part of a system interacts with an uncontrolled, unmodeled
environment.

Unfortunately, distinguishing experimentally between the Copenhagen and Ev-
erett interpretations is difficult, if not impossible. (However, for an argument that
it is possible, see [46].) Many philosophers have found the Everett interpretation to
be highly implausible, and have dismissed it out of hand, because it implies the exis-
tence of enormous numbers of alternate versions of our universe that we are unable to
interact with. However, based on my own personal view of the ideal rational method
for comparing scientific theories, Everett’s is clearly the simpler and less ad hoc the-



4.2. QUANTUM COMPLEXITY THEORY 95

ory, in the sense of having a more concise mathematical formulation, and therefore
it is more likely; the fact that it predicts this amazing and untestable consequence
of a universe that is far more elaborate than we can possibly observe is, in my view,
completely irrelevant to assessing the theory’s plausibility as a scientific explanation
that thoroughly explains the phenomena that we can observe.

Interestingly, the future development of quantum computers (if successful) can be
seen as stretching the bounds of the plausibility of the Copenhagen interpretation,
because the functionality of a quantum computer depends on the assumption that
global superposition states of large and complex systems are indeed possible. The
larger the quantum computer that we can successfully build, the more implausible
seems the Copenhagen viewpoint, which arbitrarily demands that the simple quantum
theory (which says that all physics works through unitary transformations), depite
applying perfectly well to large, complex quantum computing systems, cannot be
applied identically all the way up to cover extremely large systems, e.g., the whole
universe.

4.2 Quantum complexity theory

After Deutsch introduced his quantum generalization of the Turing machine [45],
researchers wondered whether this computational model has computational capabil-
ities greater than those of classical Turing machines. In his original paper, Deutsch
showed that quantum computers could exploit “quantum parallelism” to simultane-
ously compute function values for N inputs using only one mechanism. This works
because the unitary transforms that apply to quantum states operate on the ampli-
tudes of all the possible classical states of the system simultaneously. Thus, a single
unitary transformation that implements the transition function f of a computation
can simultaneously take the state x; to f(z;) for all 7 in some index of the N initial
states.

Unfortunately, this parallelism does not effectively allow one to do N times as
much work with it as without it, because the N results of one computation cannot
all be measured, since (as described in the previous section) communication of state
information to the outside world effectively isolates the possible values of the measured
state variable from each other, and so effectively causes states inconsistent with the
measured information to have nonzero amplitude. The only way that information
about the amplitudes of different mutually exclusive states can be combined is by
taking unitary, linear transformations of those amplitudes before measuring state
information.

However, for certain problems, such unitary combinations of the amplitudes of
different states may provide information useful for solving the problem. Deutsch
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hinted at this in his original paper, showing that the XOR of the values of a boolean
function on two different inputs could be computed in the time needed to evaluate the
function once, if a certain transformation of the result states was performed before
measuring them. The catch is that half the time, at random, the measurement yields
no information—so the expected rate of finding these XORs is the same as with a
classical algorithm that first computed the value for one input, and then the other,
and XORed them.

In a later paper [47], Deutsch did much better—together with Jozsa he showed
that a certain property of functions could be determined with certainty exponentially
faster by quantum programs than by classical ones, if the function is given as a black
box as input to the program. The property (for a function that returns 0 or 1) is
whether the function is variable (it has value 0 for some inputs, and 1 for some inputs),
or biased (it has one value for more inputs than the other value) if we are given that
it is not both. If, on the contrary, it is both—say if its value is 1 on two-thirds of the
inputs—the quantum algorithm may return either answer.

Unfortunately, it is hard to think of a realistic scenario where such an ability might
be useful. For example, if the given function is a simple boolean formula applied to its
input bits, we may be interested in knowing whether the function is variable (which
corresponds to the famous SAT or “satisfiability” problem), but if it is, who cares
whether it is biased! Unfortunately, if the function is highly biased, as is generally the
case for hard SAT problems, then the algorithm will almost always answer “biased”
instead of “variable,” giving us no help with the satisfiability question. A classical
algorithm could do just as well on SAT by trying input assignments at random. The
Deutsch-Jozsa algorithm is really only helpful if we know that the input function is
either constant or unbiased, and we cannot tolerate any non-zero probability of failure
in determining which one it is. This seems like an unnatural problem.

But in any case, following the Deutsch-Jozsa paper, analysis of the power of quan-
tum computers developed rapidly with papers [23, 22, 21] that defined various quan-
tum complexity classes and compared them with various classical complexity classes
in relativized oracle settings similar to Deutsch and Jozsa’s. Quantum operations
were also found to have uses in implementing various cryptographic operations; see
the end of [23] for a summary. Quantum analogues to the popular classical complexity
classes such as BPP (bounded-error probabilistic polynomial-time) and ZPP (zero-
error probabilistic polynomial-time) were defined, and various of the quantum classes
were shown to be larger than the various classical classes—but only in relativized
oracle settings, such as we used in §3.4.2.

However, none of the oracle problems addressed seemed particularly evocative of
real problems until Simon’s [149] paper, which showed that the following problem
was in ZQP (zero-error quantum polynomial-time): We are given a function f, and
told that either f is 1-to-1, or else it is 2-to-1 and there is some bit-mask s such
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that f(z) = f(s ® x) (where @ is bitwise exclusive-or) for all input bit-patterns z.
The problem is to determine whether the former or the latter is true, and if the
latter, to find s. This seems a better than the earlier problems because it actually
returns a significant amount of information about its input in the form of finding
the XOR-mask s (if it exists). Anyway, Simon showed that quantum computers
could solve this problem with certainty using a polynomial number of queries of the
input function. Classical algorithms require exponentially many tries to achieve a
reasonable probability of success.

The extraordinary thing about Simon’s construction was its use of a particular
unitary transformation equivalent to a special-case of the discrete Fourier transfor-
mation that had been introduced earlier by Bernstein and Vazirani [21]. Originally
this Fourier transform was used to solve a certain simple oracle problem using O(1)
queries on a quantum computer as opposed to the ®(n) queries that were classically
required. The Fourier transform is linear and invertible; it turns out that it is unitary
as well, and a discrete Fourier transform on functions of n-bit inputs can be performed
on a quantum computer in time polynomial in n using a recursive procedure related
to the classical fast-Fourier-transform (FFT) algorithm [91].

Simon’s ingenious use of the quantum Fourier-transform algorithm to reduce an
exponentially-hard problem to polynomial time was the original inspiration for Shor’s
application of a more general version of the transform to a difficult and plausibly
important problem: factoring large integers. (The problem is important, at least
to certain government agencies, because efficient factoring is the key to cracking
RSA ([38] §33.7, p. 831), the popular public-key cryptography algorithm.) We now
summarize Shor’s algorithm.

4.3 Outline of Shor’s Algorithm

Shor’s algorithm depends on an old reduction from number theory, which translates
the problem of the factorization of NV to the problem of finding the order of a num-
ber z ( (mod N)). To understand the “order” concept, recall that if z is relatively
prime to N, then multiplication by z ( (mod N)) is one-to-one. Therefore, the se-
ries 2%, x', 2%,... ( (mod N)) eventually gets back to 1 and cycles around again, i.e.,
Ir > 0:2° = 2" (mod N). The order of z ( (mod N)) is defined to be the least such
r. The connection with factoring is that if 7 is even, then either (z7/2 — 1) mod N or
("2 +1) mod N has a common factor with N, which can then be easily found using
Euclid’s algorithm for finding the greatest common divisor (ged) ([38], §33.2, p. 808.)

Therefore, if a polynomial-time algorithm for finding the order of a number mod
N is available, then it can be used to factor N as follows:

1. Pick a random z < N.
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2. Compute f = ged(z, N); if f # 1, return f. (It’s a factor.)

3. Find the least r such that 2" =1 (mod N).

4. If either ged(z™/2 — 1, N) or ged(2'/2 4 1, N) is not 1, return it, it’s a factor.
5. Otherwise, go to step 1 and repeat.

The number of repitions of the above loop required to find a factor with probability
> 0.5 can be shown to be only polynomial in the length of /V, therefore if all the steps
1-4 are polynomial, then the algorithm as a whole takes only polynomial time.

The bottleneck in the algorithm is of course the computation of r, which Shor
implements via a clever application of the Fourier transform to quantum parallelism.
The quantum computer is made to compute z” for all r < N? simultaneously. As
discussed earlier, the series of 2" ( (mod N)) is cyclically repeating if x is relatively
prime to IV; the period of repitition is the order of z. This cycle of repeating values
is stored simultaneously in N? distinct states corresponding to the N? different input
values of r; each state is present with the same amplitude. Then, the quantum Fourier
transform is applied to the superposition of result states. Instead of representing an
equal superposition of all the r and 2" mod N, the function from states to amplitudes
now encodes a superposition of frequency spectra for finding the different values of
2" mod N. These spectra will have amplitude peaks at points correspondsing to
multiples of the basic repitition period of z". If we then measure the state, it will
(with high probability) lie very near one of the peaks, and the value of the state
measured will let us guess the repitition period (which is the answer we are looking
for) with high probability.

Let us examine how this is done in more detail, with reference to the example
illustrated in figs. 4.1 and 4.2. In this example, the number to factor is N =3 x 11 =
33. Let g be the smallest integral power of 2 greater than N?, and let £ = lgg. In
the real algorithm ¢ would be 2048, but we will take ¢ = 256 instead for ease of
visualization. We will have two quantum registers (a,b), where a is an ¢-bit register
ranging from 0 to ¢ — 1, and b ranges from 0 to N — 1.

In figs. 4.1 and 4.2 we illustrate the superposition state of the joint space of these
two registers, following each stage of Shor’s algorithm. In these figures, the position
along the horizontal axis represents the state of register a, and the position along
the vertical axis represents the state of register b. At every point on the resulting
two-dimensional surface representing the combined state space, we place a blob of ink
whose darkness corresponds to the absolute amplitude of that state. (Additionally,
when displayed on a color output device, the hue of the ink in these figures indicates
the phase of the amplitude.) White areas correspond to states having zero or nearly
zero amplitude.
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Figure 4.1: Example of Shor’s algorithm with N = 33, ¢ = 256, x = 5. Left:
superposition over all values of a, with b = 0. Right: superposition after computing

b= 2" mod N. Across a there is periodic cycling of b through the 10 values 1, 5, 25,
26, 31, 23, 16, 14, 4, 20.

We start with an initial quantum state of |0,0), that is, « = 0, b = 0. First
we prepare an equal superposition of all values of a while leaving b = 0. The left
side of fig. 4.1 shows the amplitude spread out over all the values of a, in the row
corresponding to b = 0. This is the superposition

3 |0, 0)/Va.

Next, z is chosen at random (in our case, to be 5), and we perform a classical
reversible computation to transform the value of b from 0 to 2* mod N. The right
side of fig. 4.1 shows how the blob of amplitude associated with each value of a is
moved vertically to the state also having the correct value of b. With increasing
a, we see that b cycles periodically among various values, with a period that is (by
definition) the order of x mod N, which in this case is 10.

Finally, leaving b, alone we perform a Fourier transform over the value of register
a. This is defined by

YP'(a',b) = Zexp(Qm'aa'/q)w(a, b)/\/q

Figure 4.2 illustrates how the amplitude in each row associated with each value of
b is moved horizontally to cluster in peaks, whose number corresponds to the period
of the original amplitude distribution. Since the period is the same for each value
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of b, the peaks in each row line up, although they have a different phase in different
rows. (The color version of this document shows the amplitudes in color, with the
hue denoting the phase.)

After this, register ¢ may be sampled, and several samples will be sufficient to tell
us its period, 10 in our case. Now the rest is easy: Half of 10 is 5, and 2% mod N is
23 in our case. Twenty-three minus 1 is 22, which has a common factor (11) with our
N, and twenty-three plus 1 is 24, which also has a common factor (3) with our N.

The details of exactly how the quantum Fourier transform works are beyond the
scope of this short survey. For more detailed expositions of Shor’s algorithm, see
Ekert and Jozsa’s description in [54, 53], and Shor’s original papers [146, 147].

4.4 Important open problems

Here are some of what I believe to be the most important, and also the most difficult
open questions in quantum computing:

4.4.1 Can quantum computers solve NP-complete problems in poly-
nomial time?

This is perhaps the most interesting question about quantum computing. If the
answer to this question were positive, then quantum computing could revolutionize
computing, as we know it. There are a wide range of practical problems in constraint-
satisfaction, combinatorial search, and other areas that have been shown to be in NP,
but for which no efficient classical algorithms are known.

The ability to solve NP-complete problems efficiently would also revolutionize
all of mathematics, because it would enable us to quickly determine, for any given
mathematical statement, whether or not there is a fairly simple proof (or disproof) of
the statement, and if there is, to find it. Automatically checking a (suitably formal)
proof for correctness can be done in polynomial time in the proof length; therefore,
finding a proof of a given length can be done in nondeterministic polynomial time in
the target length. Therefore a method for solving NP problems in polynomial time
could find proofs in time polynomial in the proof length.

Currently, it seems unlikely that quantum computers could solve NP-complete
problems, due to the fact that the only known quantum algorithms that dominate clas-
sical algorithms either involve unrealistic oracle-dependent promise problems [21, 149],
or introduce only polynomial speedups [77, 78], or only simulate quantum mechanics
[25], or depend on the ability to reduce the problem to one involving periodicities for
which the quantum Fourier transform is useful [147, 26]; one would not expect such
periodicities a priori to be characteristic of all problems in NP.



4.4. IMPORTANT OPEN PROBLEMS

101

32I 1 I | i

Register b

| ' el 3
OI i I | I

0 Register a

255

Figure 4.2: Superposition after performing quantum Fourier transform over register
a in Shor’s algorithm, when factoring N = 33 with the choice of x = 5. The value
of a is now peaked at 10 points spaced 25.6 units apart. The number of peaks is the
period (order) of the function 5* mod N, shown in the right half of fig. 4.1. After
the transform, sampling a permits determining the period, and halving it, we find 5°
mod 33 = 23, which is 1 away from numbers that have common factors with 33, and

the problem is solved.
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However, it is conceivable that someone may yet discover a clever quantum al-
gorithm for general simulation of nondeterministic Turing machines. One possible
approach might be to reduce some NP-hard problem to the factoring or discrete log-
arithm problem; however, complexity theorists have attempted such reductions for
many years without success.

A more sophisticated approach might involve finding some other unitary trans-
formation other than the Fourier transform that could allow states associated with
parallel paths in a quantum simulation of a nondeterministic machine to construc-
tively interfere in ways that might yield useful information about the structure of the
search space, and help to pin down the solutions. Hogg [85] has investigated quantum
algorithms that enhance the probability density found along solution paths in NP
search problems, but not enough to allow measurements of the machine state for such
problems to yield solutions in expected polynomial time.

On the other side of the question, Bennett et al. [20] have provided suggestive
evidence against the NP C BQP conjecture, by showing that when R is a random
oracle, NP* 5> BQP¥ with probability 1. However, it is worth noting that since
BQP DO P, an actual proof that NP D BQP would imply that NP D P, a conjec-
ture whose proof has long eluded complexity theorists. Thus, it seems unlikely that
the possibility of quantum computers subsuming nondeterministic computers will be
conclusively ruled out anytime soon.

4.4.2 Are quantum computers strictly more powerful than classi-
cal computers (with a bounded probability of error)? Ie.,
BQP D> BPP?

This question at first appears the same as the previous one, but there are two im-
portant differences. First, it may be the case that P = NP, in which case both
quantum and classical computers could solve all problems in NP efficiently, and so
the quantum computers might not be any more powerful than the classical ones.

Secondly, if the answer to the question is negative, i.e. if BQP C BPP, then
this has important implications for physics, because it might mean that existing
classical computers could therefore simulate arbitrary quantum systems with only
a polynomial slowdown, which is not currently known to be possible [59]; current
classical simulations of quantum systems all suffer from an exponential slowdown.

A faster method for simulating quantum physics would revolutionize much of
theoretical physics, because it would allow many more predictions to be derived from
quantum theories, predictions which could then be compared with experiment to
refine the theories; and it would also reduce the current dependence on approximation
methods in many important areas of applied physics, such as modeling molecular
interactions, e.g. for drug design.
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Unfortunately for these tantazlizing prospects, the existence of Shor’s factoring
algorithm, together with the long-standing failure of many generations of brilliant
mathematicians to find a classical equivalent, seems to leave little hope for a quantum-
classical equivalence. Even if quantum computers are not as powerful as nondeter-
ministic Turing machines, they may be strictly more powerful than deterministic
ones.

4.4.3 Can errors caused by imprecision and decoherence be controlled
sufficiently to allow arbitrarily complex quantum computations
to take place with an arbitrarily small probability of failure?

A number of papers have expressed pessimism regarding the question of error accu-
mulation in quantum computers, e.g., [96, 95, 173, 174, 33, 132]. These papers show
that in the absence of error correction, the probability of error increases exponentially
with both the time and space complexity of the computation, and the expected error-
free running time for various experimental setups has been estimated to be roughly
on the order of the time to perform a single computational step, seemingly ruling out
the possibility of doing interesting quantum computations.

However, Coppersmith [36] has shown that simple imprecision does not cripple
the quantum factoring algorithm, and several more recent papers [28, 32, 155 have
addressed the more difficult issue of correcting errors due to decoherence of the quan-
tum states. They work by encoding a bit value redundantly in a superposition of
many bit values in such a way that up to n independent interactions of bits with
the environment can take place without communicating any information about the
value of the encoded bit to the environment. If fewer than n bits interact with the
environment, than the system can exactly recover the originally-encoded superposi-
tion and then regenerate its redundant representation. The only problem is that this
reconstruction process will in general be subject to errors as well. More sophisticated
techniques might take that into account. In summary, although these papers appear
to be on the right track to a solution, a more complete theory of quantum error
correction is still needed, and remains to be worked out.

Cesar Miquel’s 1996 preprint [127] reports results of some simulation experiments
on error-correcting versions of Shor’s algorithm in the presence of errors.

4.4.4 How do we build it, physically?

Although the question of how to implement quantum computations physically is of
course a question of utmost importance for the future of the field, to a large extent the
details of the physical implementation are orthogonal to most of the theoretical issues
dealt with in the literature we have reviewed. There is another huge literature, mainly
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under the rubric of experimental physics (rather than quantum theory or computer
science), which deals with constructing physical realizations of systems of controlled
interactions between quantum states. For example, researchers in quantum optics
study how to manipulate information encoded in the polarization staes of photons;
“cavity QED” workers study the interactions between photons and electron spins on
individual atoms [56, 168|; and other experimentalists work with vibrational states
in assemblages of interacting atoms [35].

An intriguing recent development in implementation techniques has been the in-
vestigation of NMR “ensemble quantum computing,” in which the nuclear spins of
atoms in molecules in solution are made to interact using nuclear magnetic resonance
techniques [39, 76, 40]. The NMR experiments have had the most success of any tech-
niques to date; quantum logic operations involving 2 and 3 bits have been successfully
demonstrated.

Even more recently, Mooij et al. [128] have described how to implement quan-
tum computation on a chip surface in microlithgraphed superconducting Josephson-
junction circuits. In this scheme, quantum bits are encoded in the direction of a
quantized current flow in a superconducting loop. The system is projected to have
very long decoherence times, making it fairly amenable to quantum error correction
algorithms, and moreover, quantum circuits of arbitrary size and complexity can be
readily patterned. At the moment, this approach seems the most likely candidate for
implementing a practical quantum computer in the near future.

Some older proposals for implementation technologies for quantum computing,
from various communities, include Teich et al. ’88 [158], Lloyd '93 & ’94 [112, 113],
DiVincenzo ’95 a [49], Sleator & Weinfurter '95 [150], Barenco et al. 95 b [10], and
Chuang & Yamamoto '95 [34].

The main lesson to be learned from this long list of proposals is that the details
of the physical implementation of quantum computers are “just” an engineering con-
cern, rather than a theoretical issue of fundamental importance. Researchers since
Feynman [60] have noted that there seems to be nothing fundamental in quantum
physics that precludes using it for computation, and indeed, the multiplicity of ideas
listed above seems to bear that out. Although certainly the development path of
many particular techniques will be beset with problems, it seems likely that even-
tually our technologies for manipulating quantum particles will mature to the point
where some form of complex controlled assemblages of quantum states will be built
fairly readily—that is, if it is useful to do so. The question of whether it would be
useful can only be answered by the theoretical studies such as those we surveyed in
this chapter; no matter how a quantum computer is finally built, the theorems and
algorithms produced by those studies will still apply.
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4.5 Summary of quantum computation

Although it appears that the basic computational steps of quantum computers may
soon be implementable, and that a large quantum computer may be able to factor
numbers faster than a classical computer, many practical problems such as error-
correction remain to be solved before we can scale up to large enough computers to
be useful. Another possible show-stopper is that factoring and a handful of other
problems relating to cryptography [26] may turn out be the only real-world problems
amenable to fast quantum solutions, which may not provide enough motivation to
support the development of quantum computers. Although cracking RSA is a tanta-
lizing prospect, it would not necessarily change the world radically—RSA might just
be replaced by another code that is less amenable to quantum solution, especially
perhaps one using quantum crypography. However, there is hope that applications
such as the use of quantum computers to efficiently simulate models of real quantum
physical systems [25] might revolutionize physics as we know it.

In chapter 2 and in this chapter, we have seen how some basic physical principles
affect the limits of what is possible with computers, sometimes in surprising ways. In
the next chapter, we will discuss the benefits to be gained from developing “ultimate”
models of computation that accurately reflect these limits, and we will propose some
candidates for an ultimate model. The ultimate model may or may not turn out be
able to use large-scale quantum coherence in the way that we have discussed in this
chapter, but in chapter 6 we will see that, at the very least, the ultimate model must
be reversible.
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