Chapter 6

Reversibility and
physical scaling laws

In this chapter we analyze how the use of reversibility can improve how well various
measures of computational cost-efficiency will scale as we increase the size of our
machines, or the size of the problems we are trying to solve. Our analysis estab-
lishes that only reversible computers are capable of realizing the maximum level of
computational scalability that is afforded by the laws of physics.

Moreover, even with today’s relatively primitive level of technology, substantially
reversible computing can already be the most cost-effective solution in contexts where
energy dissipation is a dominant concern, such as in portable devices, or large super-
computing systems. Also, we expect that as device technology improves, reversible
operation will become more and more favored.

In chapter 3 we discussed how existing reversible models of computation compare
with irreversible models when using a variety of non-physical measures of cost, such
as are used in traditional computational complexity theory. Using those measures,
we saw that reversibility did not improve efficiency, and in some models could be
proven to actually degrade efficiency (§3.4), when carried to the extreme of total
reversibility. But the problem with taking those results at face value is that, as we
saw in the previous chapter, traditional computation models and cost measures are
not realistic; they do not reflect real costs and the physical constraints on computation
that we discussed in chapter 2.

In section 3.2.2, p. 54, we introduced some new cost measures which we proposed
were more physically appropriate than are the quantities that are traditionally mea-
sured in computational complexity theory. In sec. 6.2 (p. 124) we will perform an
analysis of physically realistic models of computation using various such physical cost
measures, and show that using those models and measures, reversibility can be seen
to increase overall efficiency.
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Let us now introduce the general classes of models which we will analyze.

6.1 Types of architectures studied

For convenience, in this chapter we will use the term architecture to denote the con-
cept of a model of a family of physically-implementable machines, such as those we
proposed in ch. 5. Section 6.2 of this chapter analyzes the properties of several very
general classes of architectures, which we will define below: fully irreversible archi-
tectures (FIA), time-proportionally reversible architectures (TPRA), and ballistically
reversible architectures (BRA). All three of these classes will have a number of fea-
tures in common.

6.1.1 Shared properties

The machine classes we study will all be imagined to be implemented in some fixed
underlying technology, which we take to mean that several quantities are fixed across
all three classes of machines:

1. There is a fixed minimum physical size (mass and volume) for storing a bit of
computational state.

2. There is a fixed maximum physical entropy density allowable within the ma-
chines in question, including in their cooling systems.

The above two items can be justified on the basis of the limits presented in §2.2,
along with the argument that mass densities, energies, and temperatures will
not be able to be increased indefinitely in any computer technology realizable
in the foreseeable future.

3. There is a fixed maximum rate at which bit-operations can be performed per
unit of mass and per unit of volume in the machine.

This limit follows from the fundamental Margolus-Levitin bound we mentioned
in §2.4; much tighter bounds than this will certainly hold for all technologies
through the foreseeable future.

Now let us distinguish the three classes of architectures that we will study.

6.1.2 Fully irreversible architecture

A fully irreversible architecture FIA is one in which there is a fixed constant lower
bound, independent of the machine size or of any adjustable parameters of the ar-
chitecture, on the average number of bits of computational information that are lost
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(converted to entropy) per primitive computational operation that is performed. Note
that this does not count the mere conversion of bits that may already be entropy from
a controlled digital form to an uncontrolled physical form. We are concerned here
only with the amount of new entropy that is generated per operation due to the
architecture.

An architecture is fully irreversible if, for example, it routinely uses ordinary
irreversible logic gates, which must produce entropy every time they erase a bit,
according to Landauer’s principle (§2.5).

6.1.3 Time-proportionately reversible architecture

A time-proportionately reversible architecture TPRA is one that provides the option
to reduce the average entropy S generated per primitive operation to an arbitrarily
small amount that is asymptotically proportional to the inverse of the amount of
time ¢,, over which individual operations are performed; that is, S ~ 1/t,,. In such
architectures, the “degree of irreversibility” (entropy generated per operation) is in-
verse to this time, so the “degree of reversibility” can be considered proportionate to
time. Thus we use the adjective “time-proportionately reversible,” to describe these
machines, the motivation being that this is much more precise than alternative adjec-
tives such as “adiabatic,” “asymptotically reversible,” and “quasistatic” which have
often been used in the past when referring to technologies that have this particular
property. (See §7.3 for further discussion of this terminology issue.)

As we will see in chapters 7 and 8, a large number of existing and proposed logic-
device technologies are capable of implementing time-proportionate reversibility; so
the TPRA model is certainly realistic for purposes of an asymptotic scaling analysis.
However, the constant of proportionality (which we call the “entropy coefficient”)
varies greatly across different technologies, so the range of validity of the asymptotic
analysis depends significantly on the technology in question.

6.1.4 Ballistic reversible architecture

This next class of “architectures” may or may not actually be realistic, but it will be
a useful point of comparison, which will help us interpret the results of our analysis
of the TPRA. The ballistically reversible architecture BRA is a model based on an
imagined technology where the entropy generated per constant-time operation can be
made exactly zero, or at least so close to zero that the difference does not matter for
any achievable scale of machines.

A BRA is the conceptual limit of a TPRA in which the entropy coefficient becomes
arbitrarily small. It is appropriate to consider this limit because we do not yet know of
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Entropy generated
Symbol | Name of architecture class per operation
FIA | Fully irreversible architecture O(1)
TPRA | Time-proportionally reversible architecture | ©(1/top)
BRA | Ballistically reversible architecture 0

Table 6.1: The three classes of physical machine models that are compared in this
chapter. The defining difference between them is in how the average entropy generated
per computational operation scales in relation to the length of time ¢,, over which
the operation is performed.

any fundamental physical restrictions on how low the entropy coefficient can actually
be made to be.

Note that in both the TPRA and the BRA we specify that fully logically reversible
operation is permitted, but not required. In these models, we also provide the option
to perform logically irreversible operations which generate constant entropy. (More-
over, the type of operation to use should be selectable at run time.) This allows
these models to use the external universe as a garbage-information dump, just like
the FIA does; this option ensures that our reversible machines will be at least as
powerful as the FIA, since it will be subsumed as a special case, one in which the
time-proportionate reversibility feature is effectively unused.

Table 6.1 summarizes the three classes of architectures we will compare in this
chapter.

A general feature of these analyses will be attention to some of the subtle ways in
which several kinds of physical constraints, such as limits on entropy density and
propagation speed, interact with each other to determine the form of the most cost-
efficient possible machines.

The structure of the rest of this chapter will be, roughly, to proceed from the
simpler, less compelling physical cost measures and analyses to more sophisticated
and realistic ones.

6.2 Analyses under various physical costs

In this section we determine, for various cost measures $, the reversible advantage
A, under the given cost measure. We define A, as the asymptotically fastest-growing
value of the cost-efficiency ratio Zsrey/ %sirr, as a function of cost, for any class of
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computational tasks. Equation (3.1), p. 54 defined cost-efficiency as

Therefore, letting $; and $. be the costs on an irreversible and reversible machine,
respectively,

Ar = %$rev/%$irr
= ($min/$r)/($min/$i)
$i/$r:

that is, the reversible advantage is equal to the ratio of the cost on an irreversible
machine to the cost on a reversible machine. (And similarly for the ballistic advantage
Ap-)

We will often normalize A, by expressing it as a function of $,, the cost on the
reversible machine. So, if we write A, ~ f($;), this means there are classes of com-
putations such that, for instances that cost $, to perform on a TPRA (reversible)
machine, the cost to perform them on an FIA (irreversible) machine in general is
O(f($;)) times larger. If f ~ 1 this indicates no reversible advantage; any f > 1 in-
dicates an asymptotically unbounded reversible advantage, as the cost level increases.

It is important to keep in mind that the true reversible advantage is determined
by the best possible efficiency of each of the two classes of machines on the problem in
question. To show a reversible advantage greater than ©(1) (no asymptotic advan-
tage), we have to show that no FIA machine can perform a given computation with
less than a given asymptotic cost that is achievable on a TPRA.

Moreover, throughout this section we will be concerned only with sustainable
costs; that is, an assessment of a computation’s cost will only be considered to be
fair if a long series of N > 1 repetitions of computations like it could be performed
on the given machine class with no more than N times the cost. This will allow us
to marginalize factors such as the time required for set-up of the initial state and
read-out of the result. It is assumed that this is fair to do, because there are many
useful computations that are of a form that requires numerous sequential iterations
of a procedure.

Some of the analyses and results in this section were first reported in our earlier
publications [70, 71].

6.2.1 Entropy cost

Perhaps the simplest physical measure of cost, which also gets us away from the bias
towards the abstract time and space cost-measures featured in traditional complexity
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theory, is the idea of the cost of a computation being proportional to just the amount
of new entropy that it generates.
This measure makes sense for several reasons:

1. Entropy takes up space, and when too much of it accumulates within a fixed-
size system, it causes the system to become disordered in uncontrollable ways.
For example, a computer might melt if it produces too much entropy without
removing it.

2. As we saw in §2.5.3, energy is required to support the existence of entropy in
any system at non-zero temperature. Therefore it costs us free energy whenever
entropy is generated. As we mentioned in §2.5.4, the coolest accessible place to
dump large amounts of entropy is the cosmic microwave background at ~ 3 K,
so each bit’s worth of sustained entropy generation costs us at least ~ 3x10723 J
(~ 0.2 meV) of energy which cannot be recovered. (Except maybe by waiting
for the universe to cool further, which will take a while!)

3. Even in the distant-future limit, if there is a finite upper bound to the maximum
entropy of the universe, then negentropy (Smax— Scurrent) 1S @ truly non-renewable
resource; once we use it up, no further entropy-producing operations will be
possible. (There’s a cost measure for you!) So the efficiency of our use of
entropy is crucial if we wish to maximize the total amount of computational
work that we accomplish throughout all time.

Scaling comparison. With entropy alone as the cost measure, $ = S, the compar-
ison is of course straightforward. The irreversible FTA machine by definition produces
constant entropy per operation, so the cost of any computation scales as the number
of primitive operations, § ~ Nops.

The ordinary reversible machine TPRA, given unbounded space, can be run in
fully logically reversible fashion using Bennett’s 1973 algorithm (with the same order
Nops as the FIA), and still produce no computational entropy other than, at most, the
size n;, of the input problem, and that only if the input is no longer needed after the
computation. The entropy generation due to friction can be made arbitrarily smaller
than n;,, by extending the computation over a sufficiently long period of time. Thus
the total entropic cost is at most equal to the input size, $ = ni,.

Similarly for the ballistic BRA, except that we do not have to run the machine
indefinitely slowly to achieve that low of a cost.

Thus, unsurprisingly, when entropy is the cost measure, reversible machines com-
pletely dominate irreversible ones in their cost-efficiency. Since for arbitrary problem
classes, Nops may scale arbitrarily quickly with ni,, the reversible advantage factor
may be an arbitrarily fast-growing function of the input size.
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Of course, using entropy as the sole cost measure is not particularly compelling, be-
cause it ignores the opportunity cost of using up some amount of physical space for
the amount of time required by the computation. This is particularly apparent for
the case of the TPRA which may consume a large amount of space (for example, pro-
portional to Nops) for a large amount of time (£2(NZ;/ni) to get the physical entropy
generation below O(n;,)). When minimizing entropy only, total spacetime resources
for a computation will likely be polynomially larger for the reversible computation.
Thus it behooves us to consider those costs as well.

Before we study true spacetime costs, let us first consider another measure of cost
that is easier to analyze, but still takes into account measures of both run-time and
machine size.

6.2.2 Area-time product

For purposes of this section, we will characterize machine size as the surface area A of
the least-area surface that encloses all of the computer’s active information-processing
components. Note that if the “computer” happens to consist of many independent
components that are spread far apart from each other over a large surface, then
under our definition, the least-area surface enclosing the system may actually consist
of many separate small surfaces, one around each component.

In any case, one reason to think of area as a component of a cost measure is that
it measures quantities such as desktop footprint, floor space, and land (planetary
surface), which have everyday significance as resources. Moreover, present computer
manufacturing technology, based on building up structures on the surfaces of silicon
wafers, is geared towards building dense circuitry in only two dimensions, so area is
a frequent cost measure in that arena as well.

More fundamentally, due to the limits on entropy density we assumed in §6.1, we
will see in a moment that minimum surface area determines the maximum sustained
rate at which entropy can be produced within the surface. If a system actually does
produce entropy at this rate, it thereby subtracts correspondingly from the maximum
rate at which entropy can be produced by the remainder of any larger system within
which it is enclosed. So, area makes sense as a component of computational cost.

Multiplying the area by time converts it to a measure of the rent that the area
would yield over the course of the computation if it were rented out for other purposes
(such as for alternative computations). This makes sense in intuitive economic terms,
and it also corresponds to a bound on the total amount of entropy that the given
system could have produced over the given amount of time.
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6.2.2.1 Rate of computation as a function of area

For computing the area-time product, let us first ask, how does the maximum rate of
computation scale as a function of area?

For now, we will characterize the raw processing rate R, in terms of the number
of primitive computational operations (such as logic gate operations) performed per
unit of real time. We also assume, for now, that the computation being performed
is an inherently logically reversible one that does not require asymptotically more
computational steps or memory on a reversible processor; this will allow us to treat
time-proportionally reversible operations as equivalent to irreversible operations for
our purposes. An example of such a computation would be a simulation of a logically
reversible system; we will see other examples in ch. 9.

Irreversible machine. The FIA machine by definition produces ®(1) entropy per
operation, and we assume as always that entropy densities are limited. As per our
arguments in §2.3, the rate of entropy removal per unit area is therefore also limited.
Since the total volume within the given area is limited (it’s at most V < 1x=1/243/2),
it follows that for a long computation, the highest rate of entropy generation that is
sustainable is just equal to the maximum rate at which the entropy may leave through
the surface. This rate is bounded by the fixed maximum entropy flux Fs times the
minimal enclosing area A. Thus R,, 3 A.

Reversible machine. Let the TPRA contain logic devices at constant average
density, so that the total number of logic devices Nge, is proportional to the TPRA’s
volume V, and let the TPRA also be roughly spherical (a cube would suffice) so that
V ~ A%?. Then, the number of devices Ngew ~ A%2. If each device operation takes
time ?,,, and all operations are reversible, the entropy per operation is @(1/t,,) and
so the total rate of entropy generation is Rs ~ Ngev /12, ~ A32) t2,. Since Rs must be
no greater than the rate O(A) of entropy removal, we have that ¢, 7 AY* Letting
top ~ AY4 we have Rop = Nyey/top ~ A%/,

Thus, within area A, the TPRA can run @(v/A) times faster than the FIA, on
computations that involve only logically reversible operations. For an approximate
sphere/cube of diameter d ~ VA, the speed advantage of the reversible machines
scales as ©(v/d). Many such cubes can be arranged beside each other in a plane
without changing the asymptotic area available to each one, forming a flat slab of
material of thickness (depth) d, which can perform at a per-area rate of ©(v/d). (See
figure 6.1.) An irreversible machine, in contrast, would be capable of only a constant
rate per unit area.

Ballistic machine. In this case there is no entropy production, so the maximum
rate of operation scales with volume, Ro, ~ A32 This is a factor of /A times
faster than the irreversible machine and v/A times faster than the time-proportional
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Entropy flow
area A
R
depth d
O V device
volume
Number of devices Ngev = AdJV
Entropy generation rate Rs = NgevS/top IF
Entropy removal rate  Rs = F5A Rop = Ay/ ﬁ
Entropy per operation S = ks/top S
Total rate of operation Ry, = Ngev/top
Max rate achieved when to, = /dks/FsV .
F. FsksV
Beats irreversible R, = Ags whenever d > = Ss .

Figure 6.1: Speed limit for reversible machines of minimum-surface area ®(A) and
thickness d 3 A2, The maximum rate of computation scales as ©(Av/d).
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reversible machine. For a sphere or slab of thickness d the ballistic machine is ©(d)
times faster than the irreversible machine, and ©(v/d) times faster than the TPRA.

So the TPRA is, in a sense, “halfway” between irreversible and ballistic machines
in terms of rate per unit area; its benefit factor above the irreversible machine is the
square root of that for the ballistic machine.

6.2.2.2 Minimum area-time product

Now that we know how speed scales with area, let us see how to choose the shape of a
machine so as minimize the area-time product AT for a given computation requiring
Nops operations, under our three classes of architectures.

Let us assume we are dealing with a restricted class of computational tasks in
which no communication is required between processors during the course of the
computation: the task can be expressed as ©(N,ps) separate computational tasks
that can be performed entirely independently of each other. This is approximated by,
for example, a brute-force search problem in which a very large number of independent
possibilities need to be checked for a solution, and checking each one takes roughly
constant time, independent of the number checked. (Remember, we can amortize
away the set-up and read-out times, because we are concerned with determining a
sustainable rate for many iterated repetitions of the given computation.)

Irreversible. If all the area can be used effectively, R,, ~ A, so the time 7 for
Nops operations is ©(1/A), and so AT ~ A(1/A) = 1. Thus the choice of the area of
the machine does not affect the asymptotic area-time product. To see what the area-
time product is as a function of Ny, consider spreading the processors arbitrarily
far apart over a 2-dimensional plane. The minimum-area surface will then consist
of a collection of small surfaces, one enclosing each processor, thus the total surface
area will be proportional to the number of processors (A ~ Nyoc), and if we give
each processor a constant-size, constant-time piece of the total problem, the number

of processors Npyoc scales as N, and the whole computation takes constant time,
and AT ~ Ngps.

DS

Reversible. Let the N, operations again be performed in parallel on Ny ~ Nops
processors, but this time in a compact structure with area A ~ NS{EC. In §6.2.2.1
we already derived that the maximum rate of computation for this TPRA struc-
ture is ©(A%*), so the minimum time 7 for N,y operations is @(N,ps/A%*), or
@(NOPS/N(%E) ~ N&I{sﬁ. Thus AT ~ N[:’I{SG in this configuration. Can we do better
by spreading the processors out? No, because when we decrease the thickness by a
factor of z, the area increases by a factor of ®(z), but the time only scales down by
O(1/x), so the area-time product increases by @(y/x). So the optimal configuration
is the one we chose, where the diameter is asymptotically minimal.
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Ballistic. In the ballistic machine we perform the N,,s operations in parallel on
Nproc ~ Nops processing elements in constant time, and because they produce no

entropy we can cram them inside the minimal surface area A ~ Ng@c without worrying
about entropy removal, and so the area-time product for the whole computation is
O(Nagd).

Thus for these inherently reversible, completely parallelizable computations, com-
posed of ©(N,ps) independent constant-time sub-computations, the TPRA reversible
model provides an area-time cost-efficiency advantage of ¢/Nps, again the square
root of the benefit of ¢/ N,ps that would be provided by a perfectly reversible ballistic
computer.

In terms of the cost on the reversible machine, the reversible advantage grows as
$i/ ® for this type of problem. This is the highest scaling possible for this cost measure,
because for both FIA and TPRA models, the optimal solution for this problem could
be achieved using the same structure: a compact, maximally-parallelized structure.
This is already the structure that favors reversible operation the most, since structures
that are smaller or more spread out will be less limited by entropy removal; and
computations that are less parallelizable will require smaller machines for a given
Noyps to minimize the area-time product.

Thus, we need not consider other types of computational tasks; we have estab-
lished that the best reversible advantage A, for the area-time cost measure is exactly
®($3/ ®). This area-time advantage does not grow as quickly as the reversible en-
tropy advantage of §6.2.1 did, but it still becomes unboundedly large as we compare
machines at larger and larger cost levels.

6.2.3 Time cost

We have seen how, given a measure of cost consisting of area times time, reversibility
yields a scaling advantage. But what if we don’t agree that there should be a surface
area factor in the cost? Can reversibility provide any benefits for optimizing run-time,
by itself?

For the sort of problem considered in the previous section, in which no communi-
cation is required between parts of the computation (during the computation itself),
it is clear that reversibility provides no asymptotic speed benefit. To minimize the
run-time, the processors performing the independent pieces of the computation can
simply be spread far enough apart so that the minimal enclosing area becomes pro-
portional to the number of processors, and then entropy removal no longer constrains
the asymptotic minimum time, even in the fully irreversible case. The run-time in
all models is then ©(1), the time for each individual processor to complete its piece
of the computation. (Again, we amortize away set-up time by assuming that many
sequential iterations of this computation are required.)
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Therefore, in order to show a reversible advantage for time-efficiency, we must
consider a different class of sustainable computations, namely one that requires fre-
quent communication between processing elements. This will imply that processing
elements cannot be spread arbitrarily far apart without adversely affecting the time
for the computation (due to the lightspeed limit). The requirement for a relatively
compact structure will then lead to a tradeoff between entropy generation and speed
which, as we will show, will favor the reversible machines.

Fortunately, many real computations of interest are indeed of the sort that requires
frequent communication. Our canonical example will be the simulation of physical
systems; in particular, reversible 3-dimensional lattice simulations (cf. [119, 164, 117];
[117] contains many more references). In such computations, each update of a com-
putational cell depends on the results of the updates of its nearest neighbors from the
previous time step.

6.2.3.1 Time for 3-D local array simulations

Irreversible time. There is a simple proof of a lower bound on the average time per
step for performing 3-D local array computations on an FIA. Consider the problem
of simulating a locally-connected Np x Np x Np array of cells for a number of steps
Ny > Np. Consider a segment of this computation consisting of a series of @(/Np)
consecutive steps. An element’s value at the end of this segment will in general
depend on the values (at the start of the segment) of all the elements less than
©(Np) positions away from it, that is, @ (NJ) different elements, and on the results
of ®(Np) updates of those elements, for a total of ®(N}) operations involved in
determining the final value.

If the series of steps is performed within a time 7, then all those @(N}) op-
erations must occur within a sphere of radius R = ¢T ~ T of the final result, in
order to possibly affect the final result, given that information propagates no faster
than light. This sphere is contained within a surface of area A ~ T2. By the ar-
guments in §6.2.2.1, the maximum rate R; of fully irreversible computation that can
be sustained within this region is then bounded by O(A) ~ T2. (We care about the
sustainable rate because the block of Np steps in question is performed in series with
Nsi/Np > 1 other similar segments operating over the same cells.)

Running at the rate R; 3 72 for time 7 means that only Nops 3 72 total
operations affecting the result can be performed within that time. For this Nyps to
be equal to the needed O (NE), 7 must then be Q(N{/?). If it takes Q(N®) time to
perform ©(Np) steps, then the average time per step is top 2 Nllj/ S,

If we assume that some means is available for ballistic constant-speed communi-
cation between neighboring processors over arbitrary distances, then this bound can
actually be achieved, using, for example, an array of Np x Np x Np processing el-



6.2. ANALYSES UNDER VARIOUS PHYSICAL COSTS 133

ements spaced a distance of @(Né/ 3) apart from their neighbors, each updating its
cell once every t,, ~ Né/ ® time units, and spending the @(N];/ %) time before its next
update exchanging results with its neighbors. See figure 6.2.

Each processor produces S = ©(1) entropy per step, so a single column of Np
processors produces entropy at the rate S/to, ~ N%/ . Fortunately, the cross-sectional
area of the column is @(ng/ %) x @(N];/ %) ~ N%/ ? and so the flow of entropy can move
along the column with no more than constant flux. And if it can be moved ballistically,
no additional entropy is generated by this flow.

Ballistic inter-processor communication and ballistic entropy transport seem to
be reasonable assumptions because they are very closely approximated by, for exam-
ple, propagation of photons or information-carrying matter through vacuum, and by
propagation of electrons through superconductors.

Ballistic computation, in contrast, may well be more difficult because the need for
frequent interactions between information-carrying components may sap energy or
introduce exponentially-increasing error; these issues would need to be addressed to
build a substantially ballistic computational system. But for purposes of communica-
tion only, no interactions need occur during flight, and so those particular problems
do not arise.

In any case, it seems a reasonable approximation to conclude that a time per
step of @(N]ID/ %) for simulation of diameter-Np, 3-d arrays can actually be achieved on
fully irreversible machines. Can we beat this when running in a time-proportionate
reversible fashion?

Reversible time. The answer is yes. Consider a TPRA implementation using a
similar Np x Np x Np array. This time, spread the processors only ¢ = @(ng/ 4)
distance apart from their neighbors, and let them take t,, ~ ¢ time for each update
computation. (See fig. 6.3.) Then the entropy generated per update is S ~ 1/t,, ~
N, 1 4, and the rate of entropy generation per processor is Rg = S/t,, ~ 1 /tgp ~
(Np 1 4)2 =Ny /2 Thus the rate of entropy generation for a column of Np processors
is ©(Np - NBI/Q) ~ N]g/?. The cross-sectional area of the column is @(Nﬁ“) X
@(N];/ 4) ~ N];/ ?so this rate of entropy generation is sustainable, and the time per
step of @(N]ID/ 4) is not prevented by entropy removal.

We can show that this asymptotic time of ng/ * is minimal for a TPRA, just as
N]ID/ ? was minimal in the irreversible case. Suppose the average time per step in a
sustained TPRA implementation is ¢,,. The average entropy generated per op is then
S 7 1/typ. Performing the ©(Ny) operations that affect a cell during an Np-step
computation then generates Q (N} /top) entropy, and since the Np steps take exactly
time 7 = o, Np, the average rate of entropy generation is Q(NJ/t2)). Suppose

top < N$/4: then the rate Rg of entropy generation would be Q(NS/O(N];/ZL)Q) -
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Figure 6.2: A machine configuration that achieves the asymptotically optimal FIA
performance of @(N];/ 3) time per step on 3-D local cell-array simulations. The top and
bottom layers of a locally-connected Np x Np x Np mesh of processors are shown, and
a single column of processors through the machine is emphasized in black. Spacing
the processors @(ng/ 3) apart gives enough room for the entropy produced by the
column to be removed with no more than the maximum achievable flux F5 = ©(1),
while still allowing neighbors to communicate with each other within ©(1) steps.
Closer spacing would increase the time for entropy removal; sparser spacing would
increase the communication time.
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Figure 6.3: A TPRA configuration that is asymptotically strictly faster than the
fastest FIA (fig. 6.2) for 3-D simulations of reversible locally-connected cell arrays.
The speedup is possible because the lower TPRA entropy per operation, ©(1/%,,),
permits the processors to be packed closer together, and run at a correspondingly
faster rate, without the fixed maximum entropy flux F5 being exceeded. An inter-
neighbor spacing and time per step of @ (N, ) is optimal among TPRA structures.
In contrast, an idealized, perfectly balhstlc machine, generating no entropy, could
achieve @(1) time per step.
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N3 - N5'/? ~ N2 that is, Rs = N2/*. But if t,, < Np/*, then the total time
topND < Ng/ 4, and so the operations must be performed within a sphere of radius
R < Ng/ 4, which has area A ~ R? < NB/ 2, Supporting a sustained rate of entropy
generation of Rg > Ng/ ? within an area A < Ng/ * would require an average entropy
flux Fs = Rg/A > 1, which violates our basic technological assumption of a fixed
upper bound on entropy flux. Therefore an average time per step ¢,, < Nll)/ * on this
problem is actually not possible for a TPRA.

Therefore, for this class of computations, relevant to simulation of physical sys-

tems, a time-proportional reversible machine is faster than a fully irreversible machine
by a factor of exactly @(N];/g')/@(N]gM) ~ Nlé/u. In terms of §, ~ T, the reversible

advantage is A, ~ $L/3.

Ballistic time. This situation is trivial. The ballistic machine produces no entropy
to remove, so N processing elements can just be packed together with minimal
separation no matter what the value of Np, and so the communication time and the
time per step can be made constant, independent of Np.

6.2.3.2 Time cost with non-local communication

In section 6.2.3.1 we saw that on 3-D array simulations with local communication,
reversible machines were faster than irreversible machines by a factor of G)(N]g/ 12)
where Np was the number of elements across the array in each dimension. Are there
other kinds of problems where the reversible advantage is greater as a function of
Np? What problems have the highest asymptotic reversible advantage as a function
of Np?

One idea to try to improve the reversible advantage is to pose a problem that
requires non-local communication between cells, to try to force the machines to be
more compact, giving the reversible machine more of an advantage. For an array
of cells of diameter ®(Np), obviously the farthest we can require a signal to travel
before being processed is @ (Np) inter-cell distances. However, if we make this logical
communication distance be as large as ®(Np), then reversibility will confer no speed
advantage, because the communication time ©®(Np) will be sufficient for all entropy
to be removed even from the irreversible machine in the most compact configuration!
So the required communication distance must actually be o(/Np) if we are to achieve
any reversible advantage.

An analysis (not detailed here) indicates that the optimal scaling relation d,
between logical communication distance (distance in terms of cells) and array size to
achieve maximal reversible advantage is d. ~ Né/ ?. For this problem, the optimal
configuration for the irreversible machine turns out to be with distance @(ng/ %

between processors, which gives a minimum time per step of G)(N%/ 3); the optimal
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TPRA and BRA are both packed at fixed density and run with a time per step of
@(Né/ %), that is, @(Né/ %) times faster than the irreversible machine. In terms of
$. ~ T, the reversible advantage is A, ~ $%/ 3. This appears to be the maximum
speedup possible using time-proportionate reversibility. Still, using the advanced
technologies mentioned in chapter 8, we expect that even this rather slow scaling is
sufficient to yield significant speedups for reversible machines over irreversible ones
at reasonable scales. (However, more detailed analysis is needed.)

Now, as we already discussed in 3.2.2.2, we generally cannot assume that time
complexity alone is a good measure of cost. Let us now see what happens to our
scaling arguments when we factor in other components of cost as well.

6.2.4 Spacetime cost

The results derived above for the minimum time for array situations might at first
appear to be inapplicable to the problem of minimizing the spacetime product, since
many of our solutions involved spreading neighboring processors apart with ever-
increasing distances between them; the total volume of the computer must thus be
enormous!

However, this is actually not the case: all the machines discussed above can be
easily converted to configurations in which the total volume of the machine scales no
faster than the volume just to store the data being manipulated.

The way this is done is by simply folding up each column of processors (normally
aligned parallel to the entropy flow) to fill up the entire £ x ¢ area available between
the neighboring columns, thus reducing the thickness of the machine in the direction
of entropy flow, to the point where the machine has some fixed density independent
of scaling. (See fig. 6.4.)

This transformation changes nothing in our earlier analyses; nothing prevents op-
eration exactly the same as before. We have one additional construction requirement,
however; namely that throughout each period that is reserved for signal propagation,
each processing element must vacate the paths across the plane (perpendicular to en-
tropy flow) along which interprocessor signals propagate, so as not to the impede the
ballistic propagation of signals to and from the processors in neighboring columns.

Therefore, our solutions from the previous section, so reconfigured, optimize vol-
ume as well as time, and thus also optimize their product. So for a given problem
size, reversibility provides the same asymptotic benefits for spacetime cost (namely,
A ~ NII)/ 6) as it does for time cost alone. Expressed in terms of the number of pro-
cessors or volume Npoe ~ V ~ Ng, we have A, ~ Ngr/olf . Expressed in terms of the

spacetime cost $, = VT ~ NJ - Nllj/ 2~ N];/ ? on the reversible machine, the advantage
is A~ NY® ~ (82/7)10 = /71,
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Figure 6.4: How to “fold up” a column of processors to convert a space-inefficient
mesh into another structure with the same asymptotic speed but minimum volume.
Initially a column of Ny (here, 18) processors extends straight up through the machine
(full height not shown) from its lowest plane. We take this column, and fold it up at
maximum density within the £ x £ area between it and its neighboring columns. The
entropy flux through that area does not increase, nor does the distance between any
two logically neighboring processors. (Indeed it decreases for neighbors in the same
column.) But the thickness d of the machine is decreased by a factor of @(¢%), from
O(Npl) to O(Np/¢?); and the volume decreases by the same factor.
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6.2.5 Mass-time product

For the array-simulation problem, the mass of our solutions scaled no faster than the
mass necessary just to represent the raw information in the array, so our solutions
optimized the mass-time product as well. Thus reversibility gives at least the same
advantage for mass-time product efficiency as well.

Together with our observations above about spacetime cost, reversibility also min-
imizes the combined cost measure (M + V)T .

6.2.6 (Area + mass) x time

This case, too, is identical, because for the machines discussed above, A + M ~ M
in all machine configurations discussed. The minimum area scaled no faster than
the mass, and so for sufficiently large problems made at most a mass-proportionate
contribution to the total cost.

6.2.7 Entropy 4+ mass-time

For problems where no communication is required between processors, the mass-time
product is proportional to the number of operations, and the entropy production
never grows faster than this anyway, so the cost in all models reduces to ©(Nyps)-

For problems such as the array simulations where communication is required,
again the total cost is dominated by the mass-time cost in all cases, so reversibility
again improves efficiency by the same factor of @(N;{olcs ) in the v/Np communication
case.

Similarly, we get the same asymptotic results for the comprehensive cost measure
$ = S+ (A+ M + V)T from p. 58. (We drop the integral here because we are
considering problems where the resource usage does not change significantly over
time.)

6.3 Generalizing the results

The scaling results of the previous section were derived under the assumption that
the computational task being performed was one that inherently required only re-
versible operations, so that time-proportionally reversible operations could be con-
sidered equivalent in power to logically irreversible operations.

We also depended on the computation being parallelizable, and in the more so-
phisticated cost measures, we depended on a requirement for frequent communication
between relatively nearby processors, and on the absence of a requirement for frequent
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communication between arbitrarily distant processors. An example of such a compu-
tation is the simulation of a spatially and temporally discretized reversible physical
system.

Given all these assumptions, just how general are the reversible scaling advan-
tages? Do they cover very many practical applications in large problem classes, other
than just physical simulations?

The complete answer to this question is uncertain, but one observation is that
Bennett’s 1989 algorithm [19, 103] can be utilized to remove the requirement for
the reversibility of the underlying task, while still permitting almost the same poly-
nomial speedups and cost-efficiency benefits. (However, the assumptions regarding
parallelizability and communication requirements remain.)

6.3.1 Speedups for irreversible computations on reversible
machines

Bennett’s technique [19] allows one to transform a logically irreversible algorithm
that requires S memory cells (“space”) and T primitive operations (“time”) into a
reversible algorithm that leaves behind no garbage information (other than input and
output) and takes T' ~ T(T/S)¢ operations, and S' ~ Slog(T/S) memory, for any
e > 0. (See Levine & Sherman 1990 [103] for the derivation.)

A finite irreversible processing element running for Ny steps performs T ~ Ng
operations, using S ~ 1 space. Therefore, using Bennett’s algorithm, such a run can
be simulated reversibly with T/ ~ N1 S’ ~ log Ny, accumulating no garbage except
for the input, that is, the state of the simulated processor prior to the run.

If we then irreversibly erase this ®(1)-size input, we generate ®(1) entropy, and
we can proceed to simulate arbitrarily many consecutive blocks of Ny steps in this
way, with an average entropy generation per reversible operation of Sy, ~ 1 /Nslt+6,
and a memory requirement of only S’ ~ log Ny, which is constant in the number of
blocks of Ng steps that are simulated.

If we wish this algorithm to be time-proportionately reversible, the average entropy
generated per operation must be O(1/%,,). So we must have Ny = t,,, or Ny

t0*€)  With the smallest choice, Ny ~ teh), the memory requirement of this
algorithm then scales as S ~ log tcl,{,(prs) ~ logt,p, given constant e.

By running this algorithm simultaneously on a 3-D array of reversible processors of
memory © (logt,,) each, we can sustainably simulate an entire 3-D array of fixed-size
irreversible processors in TPRA fashion. Furthermore, we saw in §6.2.3.1 that a 3-D
TPRA can run with ¢,, ~ NII,/4, so a memory per processor of S ~ log N$/4 ~ log Np
will suffice. Given that the computer must fit within the finite observable universe,

log Np is bounded by a reasonably small constant, so we may approximate S as
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©(1) for all practical purposes. (Although this is cheating from a pure theoretical
perspective.)
. 1/4 1/[4(1+¢)] i i
With t,, ~ N °, we have that Ny ~ N , and the Bennett simulation of
this many steps takes Nypg ~ NI ~ [t(l)l/,(Hs)]HE = op ~ N];/ * reversible operations,
for an average real time, per irreversible step simulated, of

T = topNops/Nst
-~ N];/4N];/4/N];/[4(1+5)]

1

_ 2
= ND
1

1
4(1+¢)

_ NS(IIT‘:-Z:)
Lyl
= Nt (6.1)

where &/ = ¢/(1 +¢). The exponent of Np in eq. (6.1) can be made as close to 1/4 as
desired, by taking ¢ close to 0.

In contrast, as we saw earlier, the 3-D irreversible array being simulated must
itself take at least Q(Nllj/ 3) time per step. So a reversible machine can simulate even
an irreversible 3-D array faster than that array can run by itself! This improved
asymptotic speed also leads to improved asymptotic cost-efficiency by the various
other measures we have covered. Moreover, the reversible advantages can become
arbitrarily asymptotically close to those we calculated in the previous section for the
case of simulating 3-D reversible systems.

However, as pointed out by Levine and Sherman [103], one must be careful when
using Bennett’s algorithm not to take € too close to zero, because the constant factor
in the memory requirement increases exponentially in 1/e, specifically as £2'/. But
to beat the irreversible 3-D array’s asymptotic performance, we only require ¢ < 1/2,
so the constant factor increase in memory size due to the choice of ¢ only needs to be
more than 2.

The upshot of all this is that, apparently, for any class of computations that are
sufficiently parallelizable and require the right amount of communication, a TPRA
reversible machine family, such as the R3M, can perform that class of computations
strictly faster, asymptotically, than any FIA machine family. The class of computa-
tions in question does not have to be “inherently” reversible in order for this to be
true.

6.4 Summary of scaling results

We conclude this chapter with a summary of our discoveries about the asymptotic
scaling advantages that can be gained by the use of time-proportionate reversibility.
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Cost in each model Advantage factors
Cost FIA | TPRA | BRA | Reversible Ballistic
measure | Task type ($) (%) (%) | A =8/% | Ab=8/%
$ =S any Nops Nin Nin Nops/nin Nops/nin
$=7T | no comm. 1 1 1 1 1
local comm. ng/?’ N$/4 1 N]13/12, 1/3 Nl/?’
Vo comm. | NZP | NY* | NYE | NY° g 1/6 8)°
$= AT | no comm. Nops | NI& | N2 01145 %7 Nollég : $11,/2
$=VT, | no comm. N3 N3 N 1
MT, local comm. NSH/?’ Ng+1/4 N3 ]13/12, /% NE)/?’, $1/9
.., % | v/Np comm. Ng+2/3 Nf’)+1/2 Ng+1/2 Né/G %/21 1/6 $1/21

Table 6.2: Summary of asymptotic scaling results for reversible versus irreversible
machines. The first column indicates the type of cost measure being used; S being
entropy, A surface area, 7 real time, V physical volume, M total gravitating mass, $.
the comprehensive cost measure from p. 58. The second column indicates restrictions
on the type of computational task for which the results hold, in particular on the
communication involved. The quantity Np refers to the number of elements along
each dimension of a 3-D array of finite-state cells.

Under the most comprehensive cost measures, such as $., the reversible advantage
A, can scale with factors as high as the 21st root of the reversible cost (18th root
of physical machine size), but no more than that. With fully ballistic machines,
the comprehensive advantage (in the local communication case) would scale better,

o).

See table 6.2.

The best asymptotic cost-efficiency advantage for reversible machines is of course
gained in the case where total entropy generation is the sole measure of cost. The ratio
between irreversible and reversible entropy costs in this case may be an arbitrarily
fast-growing function of problem size or reversible entropy cost. But this cost measure
is not very satisfying because it ignores the time taken and the opportunity cost due
to the temporary use of other resources (A, V, M).

In contrast, considering time costs alone gives a rate of growth for the reversible-to-
irreversible speed ratio that, for suitable problem classes, is limited to at most the cube
root, of the reversible time cost. Thus, a computation on a TPRA machine (such as
the R3M of 5.4.1, p. 116) that takes time 7 will in some cases require as much as Q(7 -
T'/3) time in the fastest possible fully irreversible (FIA) implementation. In other
words, in terms of speed, the class of architectures that permits time-proportional
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reversible operation strictly dominates the class of architectures that does not.

Of course, in general, time alone is not the only factor in the cost of computation,
so we also studied the case where various measures of machine size that influence
“rental cost” were included as well. With surface area as the size measure, the best
reversible advantage A, grows as the 5th root of cost, or the 4th root of area, or the
square root of diameter. When mass and/or volume are included as components of
the machine size, the best reversible advantage scales as the 21st root of total cost, or
18th root of the machine’s mass or volume. This advantage occurs in computations
in which communication distances are proportional to the square root of the logical
diameter of the machine.

Such scaling may not appear to be very significant, but we estimate that the
constant factors work out so that even given the relatively poor performance of the
reversible logic devices available today (which we will discuss in the next chapter),
at the extremely high end of machines buildable with current technology, reversible
operation is apparently required for optimal efficiency.

Such a machine would be rather large and very expensive (we estimate tens of
billions of dollars), but as the underlying device technology improves, machines that
gain a cost-efficiency advantage through reversibility will become buildable at lower
and lower cost levels. In chapter 8 we will show that if certain proposals for future
reversible logic devices work as predicted, any computer larger than about a micron
in diameter will require reversibility in order to achieve optimal efficiency.
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