Reversibility in optimally scalable computer
architectures *

Revision: 1.21

Michael Frank, Tom Knight, Norm Margolus

MIT Artificial Intelligence Laboratory, Cambridge, MA 02139, USA

Abstract. An important goal for computer science is to find practical,
scalable models of computation that are as efficient as is permitted by
the laws of physics. Physics implies fundamental constraints on the ef-
ficiency of computations that produce entropy. As a result, it appears
that the most efficient possible computers must use reversible primitive
operations which produce arbitrarily little entropy. In this paper we show
that a 3-D mesh of reversible processor chips, constructible using existing
technology, scales better than any physically possible computer based on
irreversible primitives.

1 Introduction

In the quest for ever-more-powerful computers, one compelling ultimate goal
is to design a physically implementable, scalable computer architecture that is
capable of performing any computation with the maximum asymptotic space-
time efficiency permitted by the laws of physics.

The recent studies of quantum computing (e.g. [13], brief review in [5]) sug-
gest that if it is possible to implement machines that can maintain and manip-
ulate indefinitely large coherent states, then it is this class of machine that will
achieve the asympotically highest possible efficiency on some problems, such
as factoring. However, since to our knowledge the practicality and scalability
of large-scale coherent computers has not yet been established, in this paper
we will primarily consider the maximum asymptotic power of physical systems
that are not able to utilize large-scale coherent superpositions of computational
states; that is, “classical” systems. However we expect that many of our conclu-
sions about the optimal classical systems will carry over to the optimal quantum
systems as well.

Due to the finiteness of the speed of light, the most efficient architectures
appear to be meshes of processors, communicating locally on a regular grid
[9, 15, 3, 16]. For maximum physically-scalable connectivity, the mesh should be
three-dimensional.

But with conventional technology, 3-D meshes can lead to a problem. If each
computational operation produces some minimum amount of entropy (discarded

* This work was supported by DARPA contract DABT63-95-C-0130.

information), and if the density with which information can exist per unit volume
is limited (by the technology and/or by fundamental physics), then, as we will
show, it follows that the number of operations per second that can be performed
in a computer per unit area of its enclosing surface is also limited. Thus in
conventional technology, expanding a mesh in the third dimension is, after a
point, effectively useless for making computations faster.

Moreover, conventional abstract models of computation fail to permit any
way to avoid this problem, because the primitive computational operations spec-
ified by those models are irreversible—a given computational state resulting from
an operation could usually have been reached from more than one possible im-
mediate predecessor. This is important because the laws of physics are them-
selves reversible at a microscopic level; any microstate can only be reached by
a unique path. Therefore, whenever a physical computer attempts to perform
one of the logically irreversible operations specified by its abstract model, the
discarded information about the prior state is not physically destroyed, but is
merely transfered somewhere else, normally to contribute to the thermal entropy
of the computer and its surroundings. This relationship between irreversible com-
putational operations and physical entropy was apparently first pointed out by
Landauer '61 [10]. A good, though somewhat dated review of the resulting re-
search is provided by Bennett ‘82 [2].

Thus, direct execution of conventional irreversible models implies a certain
minimum entropy be generated with each operation, proportional to the number
of bits of computational state that are discarded by the operation. Moreover,
current irreversible circuit technology actually inefficiently generates around 103
bits of physical entropy per bit of computational state that is discarded!

However, irreversible operations and the accompanying production of en-
tropy are actually not required for any computation, as was shown by Lecerf
’63 [11] and independently by Bennett 73 [1]. Unfortunately, it seems that com-
putations that produce no entropy may, at least in some cases, require either
more computational space or more time (by an unboundedly large factor) than
their counterparts in (nonphysical) models in which unwanted information is
permitted to simply disappear [6].

But it is important to remember that in physics, information is not permitted
to simply disappear. and that physics itself is the reversible machine upon which
any irreversible algorithm must ultimately be run. At worst, a computer that is
internally reversible can still dispose of unwanted information in a way analogous
to the use of fans or coolant flows in ordinary physical computers, namely by
simply moving it out of the way, away from where it was generated, and out to an
external environment. So ultimately, reversible models need be no less space or
time efficient than any physical implementation of any irreversible model, when
one keeps in mind the physical resources consumed in either kind of machine by
the storage and transport of entropy.

For many problems, the most time efficient algorithms may turn out to be
essentially 2-D algorithms that constantly produce entropy which is removed
along the third dimension. But for other problems, reversible algorithms that

avoid producing entropy in the first place should be able to effectively use all
three dimensions, in contrast to any model based on irreversible primitives. We
already know of some important classes of problems for which efficient 3-D algo-
rithms can indeed be completely reversible and, in principle, produce no entropy.
In particular, there is volumetric simulation of 3-D reversible physical systems;
see the examples in [14]. A reversible model of computation can solve such prob-
lems more efficiently than any irreversible machine.

This result is not just theoretical. In our group we have developed an elec-
tronic technology called Split-Level Charge Recovery Logic (SCRL) [18, 17] that
can implement arbitrary reversible operations, and in which the physical entropy
generated per operation, though comparable to normal electronics when running
at maximum speed, scales down as the cycle time increases. The only lower limit,
due to leakage currents through nominally “off” transistors, can easily be made
exponentially small and insignificant.

With this technology, the third dimension is no longer useless. Making the
third dimension thicker, adding more processors per unit area, still requires the
speed of each operation to decrease, but now (as we will show) only in proportion
to the square root of the thickness. Thus the total number of operations per
second per unit area can increase without bound. This technology will be able
to execute some problems, such as large 3-D physical simulations, unboundedly
faster than any technology based on any irreversible model of computation.

Moreover, we propose that our abstract R3M model of computation, which
we will specify in more detail later, is ultimately the most efficient physically
implementable classical architecture. On problems where the reversibility of the
model does not help, then at worst, the R3M, as we will describe it, should be
able to directly simulate any physical implementation of any competing model
with no asymptotic inefficiencies.

In view of the apparent asymptotic optimality of the R3M model among
scalable architectures, we suggest that designers of parallel algorithms should
try targeting the R3M model to see if they might gain real-world efliciency
from it. Also, we suggest that computer engineers should try building scalable
implementations of the R3M architecture using appropriate electronic device
technologies that are already beginning to become available.

As for quantum computers, if large-scale coherence can indeed be stably
maintained and manipulated at meaningful scales, it is likely that the most effi-
cient computers will turn out to be coherent 3-D meshes of quantum processing
elements. Work done now on algorithms for classical reversible 3-D meshes may
give us experience that will help later in designing good quantum reversible 3-D
algorithms, if and when a workable technology for their implementation becomes
feasible.

2 Reversibility, Information, and Entropy

We start by defining reversibility and informally describing some concepts of
information and entropy.

The definition of a reversible operation is very simple. An operation is re-
versible if it can, in principle, be undone. This means that the transformation
performed on the accessible degrees of freedom has a functional inverse. That is,
the operation is reversible if, for each state that may result from the operation,
there is a unique immediate predecessor state that could have yielded that result
under the given operation. Put another way, reversibility is simply determinism
looking backwards in time.

A computation is reversible insofar as it is composed entirely of reversible
primitive operations; a model of computation, or of a system in general, is re-
versible insofar as it permits only reversible operations to be performed within
the model. Physicists like to say of reversible systems that their “state space
is incompressible.” Reversibility and determinism are both fundamental proper-
ties of microscopic physics. Despite the popular view of quantum mechanics as
having overthrown determinism, quantum mechanics can be viewed as perfectly
deterministic at the level of the unitary wavefunction evolution. The indeter-
minism that we perceive in “wavefunction collapse” can be interpreted as only
a subjective, emergent phenomenon.

As for information, we can adopt an informal concept of information, relating
to information theory’s definition based on statistical occurences of symbols. In
information theory, the information in a message can be estimated by counting
the number of symbols in the message, while giving more weight to the symbols
which occur less frequently. A message may contain many symbols, but little
information if most of the symbols are the same.

In our more informal concept, the information in a state consists of those
bits of state that are actually being used to represent something. If bits of state
that are not being used to represent anything are always left containing zeroes,
and bits that do represent something are equally likely to be zeros or ones, then
a crude measure of the number of bits of information in a state is just double
the number of 1 bits that are present.

Even in a deterministic system, the amount of this kind of information that
is present can increase over time, because new information can simply be deter-
ministically derived from old information. Similarly, the amount of correlated,
redundant information that is present can decrease in reversible systems, because
correlated pieces of information can be brought together and the redundant in-
formation in them can be un-derived; the reversible operation that does this is
just the inverse of the deterministic operation that would have produced the
derived copy in the first place.

As an example, suppose a state is representing a pair of integers (A, B).
Such a state can be transformed by a deterministic operation to a state repre-
senting the triple (A, B, A x B), which contains “more information,” but only
of a correlated, redundant type. Furthermore, a redundant state of this form
can be transformed by a reversible operation back into the state (A, B) which
contains “less information” in the sense of less redundancy. But an arbitrary
triple (A, B, C), in which there is no redundancy, cannot be made into (A, B)
reversibly, just as (A, B) cannot be turned into (A, B, C) deterministically, with

C being arbitrary.

Now, suppose that a particular computation, or an arbitrary physical system,
is entirely deterministic and reversible, but that it happens to produce a piece
of redundant, derived information in such a way that the inverse operation that
would remove the redundancy is for some reason not effectively available. For ex-
ample, perhaps the redundant information is moving away from the information
that it was derived from, and its motion cannot be turned around. Or, perhaps
the redundant information was mixed up with some other, unrelated information
by some operation whose inverse, though it theoretically exists, isn’t physically
available in the forwards time direction.

If, through circumstances like these, a system ends up producing some in-
formation that is never un-derived, then we call this information “entropy.”
Disassociated from the information elsewhere with which it is correlated, it can
appear random and meaningless.

This definition of entropy is appropriate both for physical systems and in
reversible computation systems. Physical and computational entropy are really
the same thing; they are interconvertible. Computational entropy can be turned
into physical entropy (although very inefficiently, with current technologies) by
allowing the energy involved in representing a bit to dissipate. And physical
entropy can be turned back into computational entropy: a thermal system can
be cooled by allowing it to interact with and randomize a sufficiently sensitive
and volatile digital memory that is initially in a low-entropy state (e.g., all zeros).

Entropy in either physical or digital form is annoying because, once it is
created, it permanently increases the complexity of a state and takes up space
(physical or computational). If the total space available for storing information is
limited, or if we cannot move the excess entropy away quickly enough, from some
small region of the system where it is being generated outward to another part
of the system where there is more room to store it, then eventually the entropy
will overflow its acceptable limits and creep into and alter the state of the part
of the system that we care about. (For example, by melting its structure.)

We will see that this becomes a fundamental factor limiting the performance
of computational systems that produce entropy. But the creation of entropy in
computation is not actually necessary. As we will see, there are universal models
of computation whose primitive operations are completely reversible at the level
of computational state. And moreover, there are workable technologies for im-
plementing these models that can arbitrarily closely approach perfect physical
reversibility as well. That is. the physical entropy produced per operation can
be made arbitrarily close to zero.

In addition to physical entropy, there is also computational entropy to worry
about. Even if a computer uses only reversible circuits, and it executes all instruc-
tions reversibly, if its programming model does not actually make the inverse
instructions available to the programmer, then there may be no way to execute
a program without continuously producing entropy at the computational level.
For example, suppose there is an instruction that computes the logical AND
of two registers reversibly by placing the result in a previously-empty location.

But if there is no way to undo this operation, then the results of past AND
operations will tend to accumulate in memory over time. Since they are never
uncomputed, they are a form of entropy.

But with careful design of the set of computational primitives provided to the
programmer, it can be possible to perform any desired high-level computation
in a way that produces no computational entropy, and instead reabsorbs all
intermediate results back into the computation. However, avoiding all entropy
production may hurt other measures of performance, so this strategy is not
necessarily always useful.

In the following sections we will see exactly how entropy (either in physical or
computational form) limits the efficiency of computation, and how avoiding the
production of entropy can allow certain computations to be performed arbitrarily
faster than they could be performed otherwise.

3 How entropy limits efficiency

In this section we analyze how the production of entropy in a computer limits
its asymptotic efficiency.

We start with some considerations from physics. The laws of quantum me-
chanics imply that a region of space with bounded energy density can contain
only a bounded density of (classical) information. Energy density itself may or
may not be fundamentally limited.

In any case, there will certainly be technological limits to the achievable
density of information storage, long before we reach any fundamental limits. For
purposes of storing entropy, very high densities can be achieved by heating dense
materials, but the heat capacity of usable materialsis limited, as is the maximum
temperature at which such materials can be maintained and transported within
a functional computing infrastructure.

For stable, digital storage of information, we probably cannot hope to ever
do better than, say, by storing bits in the quantized states of individual atoms,
at a density of a few bits per atom. And of course, technology that exists today
has its own much stricter limits on achievable density of information.

In any case, let p denote the highest spatial density of storage of informa-
tion/entropy, in any form, that is achievable under a technology in question.
Example units for p: bits per cubic meter.

Now, consider a computation that produces entropy as it proceeds, and con-
sider the convex hull (least-area convex enclosure) bounding the region of space
within which that computation is performed. Given the limit p on information
density, eventually the capacity for information storage within the convex hull
will be exceeded, and in order for the computation to proceed, the entropy must
pass outwards through the hull. Asymptotically, the rate at which entropy is pro-
duced inside the region cannot exceed the rate at which entropy leaves through
the convex hull.

What is the fastest rate at which entropy may leave the hull? We have already
assumed a maximum entropy density of p. We can also assume some maximum

entropy removal velocity v, which is, at most, equal to the speed of light ¢. If
entropy crossing the hull is packed at the maximum density and is moving at
the maximum velocity, we get an upper bound on the information flux F' per
unit area of:

F = puv. ()

As an example: if entropy is encoded (either thermally or digitally) in some
material at the atomic scale at a density around 1 bit per cubic Angstrom, and if
the material is passing through the surface at a modest 1 centimeter per second,
the flux is 102* bits per square centimeter per second. This roughly corresponds
to the maximum entropy flux that might be achieved in a stream of coolant
moving at that velocity.

This may sound like it is high, but it is actually only about a factor of 30 times
higher than what routinely occurs with more passive entropy-removal methods.
A chip dumping 100 W of heat from a 1 ¢cm? surface (not uncommon today)
to a room-temperature thermal reservoir is emitting internal thermal entropy at
something like 3.5 x 1022 bits per second per square centimeter.

The flux F', whatever its exact value, asymptotically limits the rate at which
entropy can be produced inside a given region, per unit of convex hull surface
area.

If each computational operation, on average, produces some nonzero minimal
amount of entropy I, then the limit F" on the rate of entropy production per unit
area leads directly to a limit r on the total rate of computation within a volume,
per unit area of the volume’s surface.

r=F/I (2)

Recalling our second entropy flux example, of F' ~ 3 x 10?? bits/sec/cm?,
corresponding to 100 W/em?, if I = 108 bits/operation (typical entropy gen-
erated by today’s logic gate operations), we have r = 3 x 10* operations per
second per square centimeter. This may sound high, but with, say, a million
logic gates per square centimeter in a flat layer of circuitry, and with each gate
operating 100 million times per second (both typical numbers today), this means
that, with that technology, the maximum amount of circuitry operable at that
speed within a region of space is equal to only a single layer of circuitry over the
region’s convex hull! Note that this limit holds independently of the particular
spatial arrangement of the circuitry and cooling mechanisms inside the region.

This scaling of computational capability with convex surface area severely
limits the asymptotic efficiency of entropy-producing computers on certain classes
of problems. For example, consider the problem of simulating a 3-dimensional
array of elements, such as voxels (volume pixels) in a volumetric physical simula-
tion, such as of weather, air flow over a wing, or a nuclear blast. Imagine a cube-
shaped simulated space, N voxels across in each dimension, in which each voxel
must be updated on each step of simulation. Performing all the voxel updates
in the entire space for ©@(N) simulation steps thus requires 2(N*) operations.?

2 This notation is widespread in computer science. Informally speaking, @ might be

Suppose we want the simulation of this space to be computed within a region
of real space whose longest diameter is bounded by O(N). The convex hull of
such a region will have a surface area bounded by O(N?). Thus the highest
sustainable rate of entropy-producing computation within the region is O(N?).
Performing 2(N*) operations at this rate will require 2(N?) time, for an average
of £2(N) time per simulation step.

That is, continuous updating of an N x N x N voxel system within a space
of width O(N) requires an average of £2(N) time per step of simulation, in any
situation in which there is a lower bound independent of N on the entropy
produced by each voxel update operation, and in which there is an upper bound
independent of N on the maximum entropy flux attainable per unit area. Note
that any irreversible technology will indeed have some such lower bound on
entropy production per voxel update operation, namely, at least as many bits as
are irreversibly discarded during the operation.

Note however that if we could perform each voxel update in some constant
time and space with absolutely zero entropy production, then these simulations
could be performed in O(1) time per step, by simply using @(N?3) processing
elements to perform the updates in parallel. However, it may be unrealistic to
suppose that any technology could ever achieve this. But we will see that in
a realistic reversible technology, in which the entropy per operation, though
nonzero, can be made as low as desired, some of these 3-D simulations can
actually be run in only O(\/ﬁ) time per step—that is, .Q(\/N) times faster than
if conventional, irreversible technology is used.

First, however, let us examine a slightly different problem. Above we assumed
that we wished the diameter of our computer to be restricted to be propotional
to the size of the problem. Without any such restriction, and without specifying
a need for communication between parts of the computation, we could spread
out @(N3) processing elements as far apart as needed to assure that entropy
removal is not the limiting factor, and perform each simulation step in O(1)
time. Indeed, this is practical if the “space” being “simulated” is actually only
a large search space, such as a search for primes or cryptographic keys... Such
applications are not communication-limited, and thus performance on them need
never be heat-limited and reversibility cannot help with speed.

However, if we add the requirement that each voxel update depend on the
values of the neighboring voxels, as is typical in real physical simulation prob-
lems, we find that although spreading out the computation a little bit can allow
the asymptotic time per step to be smaller, reversible technologies can asymp-
totically still beat any irreversible one.

Consider the irreversible case. Even with local interactions only, after simu-
lating the entire space for @(N) steps, each voxel may potentially affect ©O(N?3)
others over @(N) steps, for O(N*) total voxel-update operations that may de-

read as approximately “a quantity proportional to” and {2 as “a quantity at least
proportional to.” Later we will also use O meaning roughly “a quantity at most
proportional to.” For the precise formal definition of the £2,©@,0 order-of-growth
notation, see [4], chapter 2.

pend on the original voxel’s value. Similarly, each new voxel value that is com-
puted depends on @(N?) prior computations over the past ©@(N) simulation
steps.

But in real time ¢, the localized datum which represents a newly computed
voxel value can only possibly have been affected by a region of real space of
radius te (where ¢ is the speed of light), which is bounded by a convex surface
area of O(t?). Only a rate r = O(t?) of entropy-producing operations can be
sustained within such a region, for a total number O(¢3) of operations that can
possibly affect the datum. Therefore, performing the O(N?) operations that are
required to compute the voxel value resulting from O(N) simultation steps must
require at least real time ¢t = 2(N*/3).

So, sustained simulation of an N x N x N 3-D voxel-based system with
local interactions requires at least t = .Q(Nl/?’) average real time per simulation
step, in any situation where there is a lower bound on the entropy generated
per operation, and an upper bound on entropy flux. Note that this bound, in
contrast to the previous £2(N) bound, holds true independently of the shape and
size of the region within which the simulation occurs. It is also independent of
the arrangement of times and places for the individual computations within this
region.

The bound can actually be achieved, using a 3-D array of ordinary irre-
versible processing elements spaced a distance @(Nl/?’) apart from each other,
and performing updates every @(Nl/?’) time units. A single column of processing
elements contains N elements, each producing entropy at a rate @(N_l/?’), for
a total rate of entropy production within the column of @(N2/3). The surface
area available for entropy removal at each end of the column has area @(]\72/3).
Therefore, entropy removal does not prevent running the processors at the given
rate of ©@(N'/3) time per step.

We will see that our reversible technology can beat this, and achieve @(N1/4)
time per step.

4 How reversibility can help

Clearly, if we could perform a computation perfectly isentropically (without any
production of entropy), this would completely change the above analysis, since
there would be no issue of entropy removal. The rate of computation that could
be sustained within a given region would then be limited only by the packing
density and maximum rate of the individual processing elements.

However, it may be physically impossible to achieve true zero-entropy com-
putation while maintaining a constant non-zero rate of processing. Bennett [2]
has described a hypothetical clockwork computer that can operate solely via
Brownian motion. and produces no entropy. However, it does not run at any
non-zero constant speed; when running purely isentropically, it makes a random
walk through the computation, which takes £2(n?) expected time to reach the
nth computational step.

Thus, the pure Brownian approach does not lead to time-efficient computa-
tion. Another approach is what we might call the “ballistic” approach. If the
physical entities that carry information around inside a computer move totally
frictionlessly, and interact without any loss of energy, then no entropy need be
produced. For example, ballistic motion is the basis for the idealized “billiard
ball” model of reversible computation proposed by Fredkin and Toffoli [8].

However, we do not know of any way to make a system that operates purely
ballistically, at some constant nonzero speed. Indeed, this may not be physically
possible.

Nevertheless, using reversible technologies, we do know how to make the
entropy production per operation arbtrarily small, by decreasing the speed at
which operations are performed, in proportion to the decrease in entropy per
operation. In other words, if an operation is performed over a time ¢, the entropy
I produced by the operation scales as

I=06(1/t). (3)

Note this scaling is not the same as just decreasing the rate of entropy production
by performing operations more slowly, with the entropy per operation staying
the same.

Bennett’s Brownian computer can be operated with speed proportional to
entropy per operation, if a small driving force is used to keep the machine run-
ning forwards steadily. Fredkin and Toffoli "78 [7] proposed an early reversible
electronics that had this scaling, based on inductors and capacitors. Merkle has
proposed nanomechanical logic mechanisms [12] that exhibit this scaling as well.

Let us now analyze how this inverse dependence of I on t affects the asymp-
totic efficiency that can be achieved on the problems discussed in the previous
section.

For a given technology, let e denote the constant factor in eq. (3), which we
may call the “entropy coefficient.” It denotes the entropy produced per primitive
operation, per inverse of the time over which the operation is performed. Its units
are bits of entropy per Hertz.

I =e/t. 4)

As an example, we estimate that e for SCRL reversible logic gates built with
current VLSI technology and operating at around room temperature is around
0.66 bits per Hertz.

Next, let n designate the average number of primitive operations that are
being performed simultaneously at any given time, per unit of convex hull surface
area. Units for n might be operations per square centimeter. For example, if all
circuits that perform primitive operations are active simultaneously, then n is
just the number of such circuits per unit surface area. Remember, this is the
area of the entire computer’s convex hull we are talking about, not the total
area of the individual chips... So n becomes larger if we just pile up more layers
of circuit boards inside the surface, for example.

Now, if each individual operation is performed over a time ¢, the rate of
computation per unit area is

r=n/t. (5)

Now, we just substitute equations (4) and (5) back into the flux-limited rate
equation, eq. (2) from the previous section, and get:

r

which we can transform algebraically into

o .

This final equation tells us that with reversible technology, the maximum
entropy flux ¥ no longer implies a fixed bound on the rate of computation r per
unit of surface area, as was the case in eq. (2) when I was constant. Instead, the
total rate r of computation per unit surface area can be increased arbitrarily, by
increasing n, the number of operations performed simultaneously per unit area.
This can be done by just stacking more layers of circuitry over a surface. Also
each layer is run more slowly by a factor 1/4/n. The total rate of computation
per unit area then increases propotionately to the square root of the number of
simultaneous operations per unit area;

r = O(Vn). (9)

Note that r can also be increased separately from n by just reducing the
entropy coefficient e. Different reversible technologies differ widely in their e val-
ues, but we currently know of no technology-independent, fundamental physical
lower bounds on the value of e.

Now, with this equation in mind, to simulate a N x N x N array of voxels
in a machine of width O(N), we can just let n grow as @(N), by stacking up n
layers of circuitry per unit area, and then ¢, the time per step of simulation, can
scale (see eq. (7)) as @(1/V/N).

An important caveat is that this approach will generally only work if the
voxel update function is inherently an invertible function to start with. Other-
wise, updating the voxel discards information about its past state. Even if the
information is kept in computational form, instead of being dissipated to heat,
it is still effectively entropy, and will still limit the rate of computation just as if
irreversible hardware were used. Fortunately, the types of systems we are most
interested in simulating, namely real physical systems, are always reversible at
some level. Systems that behave chaotically, such as in turbulent flows, may be
difficult to simulate reversibly at a coarse-grained level. However, we can use
massive parallelism to simulate at a more fine-grained level. Systems of interest
usually involve bounded energy densities, and thus bounded information per unit
volume, in these systems there is no danger of the entropy per volume element
needing to increase beyond bound, and so a purely reversible simulation should
be able to keep up with the information flow.

and

In any case, since some 3-D simulations are indeed reversible, the above
analysis substantiates our earlier claim that reversible machines can perform
some classes of computations asymptotically faster than irreversible machines,
because, as we proved in the previous section, irreversible machines require time
N per step of simulation to solve this class of problems on a width N machine,
whereas the reversible machine only requires time v/N.

In the other case we considered. where the size of the machine is not specified
to be particularly limited but there is interaction between neighboring parts of
the simulated space, we can use a 3-D array of n x n X n processing elements,
n = @(N), in which t, the time per step, and £, the distance between neighboring
processing elements, both scale as @(N1/4). The entropy I per processor per
operation is thus @(N_1/4), the entropy production rate per processor per unit
time is @(N_l/Z), the rate for an entire column of n processors is @(Nl/Q), and
with an @(Nl/z) surface area at the end of each column, the entropy generation
rate per unit area is O(1). Thus the simulation can be sustained with this ¢ =
@(N1/4) time per simulation step, faster than the maximum asymptotic rate of
@(Nl/?’) that we established in the previous section for irreversible technologies,
in which the minimum entropy generation per operation is independent of ¢.

Unfortunately for our argument, the difference in speeds between reversible
and irreversible approaches in this situation is only a factor of @(Nl/lz). Thus,
demonstrating a factor of ten increase in the speed of reversible technology rela-
tive to irreversible technology in this scenario requires considering a voxel space
102 (a trillion) times wider. Even worse, with current slow switching technology,
but assuming dissipationless light-speed communication, the optimal configura-
tion of large reversible or irreversible heat-limited machines has the processors
spread apart fairly widely. For example, for a very simple 3-D voxel update rule,
and given the parameters of a typical current CMOS circuit technology and 10
W /em? of surface cooling, we estimated the minimum size of a reversible com-
puter that would be faster than any possible irreversible computer (no matter
what size) implemented using standard gates in the same technology. It would
require an amount of silicon with about the mass of the entire planet Saturn,
spread out with 16 meters of lateral spacing between 100-micron wide processing
elements, over a disc having the diameter of the entire solar system, with a total
power output 60,000 times that of the Sun! (Running at an 18 MHz clock speed,
it would perform an astounding 1.8 x 10*3 voxel update operations per second!)

The lesson to learn from that amusing calculation is that if we are desper-
ate enough for speed that we are willing to spread out our energy-inefficient
computers over such a wide area that heat dissipation is no more of a limiting
factor than is communications latency, then in that case, the fastest computers
are so large that current reversible technologies such as SCRL do not offer any
practical speed benefit.

However, in real applications, we will generally want our computers to be as
compact as possible, for reasons beyond just speed, such as portability and ease of
manufacture. Thus it seems reasonable to levy the restriction that the diameter
of the machine should grow linearly in the diameter N of the simulated space.

In this case, as we saw earlier, reversible machines win by a factor of O(\/ﬁ),
so demonstrating a factor of 10 increase in the relative benefit from reversibility
only requires a factor of 100 increase in scale. In particular, we calculate that
with current VLSI technology and with a heat removal limit of 100 W/cm?,
a surface covered with 100 layers of circuitry packed at the maximum planar
circuit density could perform about 10 times more operations per second if it
used reversible circuits rather than standard circuits. A machine of this scale
could feasibly be demonstrated today within the scope of a university research
project.

Furthermore, as reversible computing technologies improve in efficiency in
the future, the size of the machines where reversibility wins even if the machines
are not maximally compact will decrease as well. Suppose irreversible computing
technology has improved to the point where the absolute minimum of 1 bit (or, in
more traditional units, 9.57 x 10724J /K = kIn 2) of physical entropy is generated
for each bit of computational information that is discarded. *** continue here
with examples from current technology & projected future technologies ***

5 The Reversible 3-D Mesh Model

We now describe in detail a model of computation inspired by physical consid-
erations like those taken into account in the analysis above. The goals for this
model will be as follows:

1. It should provide guidelines for the architecture of physically-possible com-
puters.

2. It should provide a relatively simple abstraction of computation, which can
be a convenient basis for the design of algorithms to be executed on physical
implementations of the model.

3. It should facilitate accurate characterization of the efficiency of algorithms
executing on physically possible implementations of the model instantiated
at arbitrarily large scales. No algorithm analysis within the model should
predict better scaling behavior than is physically achievable.

4. Tt should describe the most powerful classical model of computation that can
be physically implemented. That is, it can run any algorithm with as good
an asymptotic scaling of time and space requirements as can be achieved
for that algorithm on any physically implementable family of non-quantum
computers.

The R3M model. An R3M machine consists of a homogeneous, three-dimensional
array of units called processing elements (PEs) arranged on a cartesian lattice.
Each PE is contained within a cube-shaped region of edge length d. The regions
for neighboring PEs meet one another. Each PE contains M bits worth of com-
putational state information, together with fixed machinery for updating this
information. The period between updates to the state information is called one
“cycle.” The length of a cycle is determined by the PE state and can change,
but it must always be a nonzero integral multiple of a minimum period p. All

the PEs are synchronized, so that each cycle of each PE starts at a time that is
an integral multiple of p after some global starting time.

Running through each PE, in each of the X, Y, and Z directions, is a pathway
called an “information conduit.” Each conduit carries two flows of information,
one in each direction. The information in the conduits travels straight at a con-
stant velocity v. The segment of conduit inside each PE has a fixed information
capacity p. This is not included in the M bits of the PE itself.

Depending on its internal state, each PE may, at the start of any given cycle,
exchange information in selected parts of the conduit for information in other
parts of its internal state.

In addition to the information conduits, each PE also contains “entropy con-
duits.” Each segment of conduit has a fixed capacity H for entropy, and entropy
passes over into the conduit segments of neighboring PEs at a fixed rate. Each cy-
cle, a quantity e f of entropy is added to the PE’s segment of conduit, where € is a
fixed constant (the “entropy coefficient”) and f is the PE’s operating frequency,
or the inverse of the cycle time. This simulates physical entropy generation due
to dissipative losses proportional to the PE’s speed of operation.

Whenever the segments of entropy conduit passing through a PE are full,
the entropy generated by the PE on each cycle will replace random parts of the
PE’s internal state, rather than going into the entropy conduit. This simulates
temporary effects of overheating.

The PE is allowed to move information from the information conduits to the
entropy conduits if desired, replacing the discarded bits with zeroes, but each bit
so transfered requires some constant number I of additional bits of entropy to be
added to the entropy conduit, representing the inefficiency of current mechanisms
for discarding bits of computational state.

At the edge of the array of PE’s, all the entropy coming out of the entropy
conduits is dissipated into space, and disappears. The information coming out
of the information conduits can be considered output. Input may be sent into
the information conduits that are going the other way.

The only parameter of the R3M model that is permitted to change as we scale
up to larger problems is the number of PE’s across the array in each direction.

Let us now consider to what extent the model meets our specified goals.

5.1 Architectural guidelines

The R3M model does indeed directly suggest a physical architecture for its
implementation. The PEs can be reversible CPUs, such as we are designing in
our research group. The individual PEs can be allowed to control the clock rate
at which they are run.

The information conduits may be implemented using ordinary wires running
between the network interfaces of neighboring PEs. The entropy conduits may
consist of pipes containing a flow of coolant; at the edges of the array, they can
feed through radiators to release the accumulated entropy to the environment.

5.2 Model for programming

The spatial organization of the R3M model may not appear at first to be a
particularly convenient model to program. However, any desired programming
model can be emulated in software by the R3M, without, we assert, any asymp-
totic loss of efficiency compared to any other possible physical implementation
of the model.

So at worst, a programmer can just run existing programming models on top
of the R3M to hide whatever details of spatial organization or reversibility he
wishes to ignore. If he does so he will pay the same performance penalties that
are incurred by direct physical implementations of the traditional architecture.

Additionally, the R3M offers the new possibility that clever programmers
and computer scientists can invent new programming models and algorithms
that actually perform asymptotically better on large problems than was possible
with any of the existing architectures.

We therefore consider the R3M to be a good low-level hardware architec-
ture, because, we assert it does not hide any of the underlying efficiency of
physics (except for quantum coherent effects) from its lowest-level program-
mers. If those low-level programmers wish to hide some of this efficiency from
the higher-level programmers in order to provide a more intuitive traditional
programming model, they can still do so.

5.3 Accurate scaling

We have ignored very few physical limitations on asymptotic scaling behavior
in our characterization of the R3M model. Of course, the effects of gravity are
completely ignored.

Also, we ignore the fact that the transport of information and entropy through
the conduits is not really free, but itself must generate some small amount of en-
tropy. However, we feel justified in assuming that these losses can be very small
compared to the entropy generation that occurs within the processing elements.
If no easier mechanisms for nearly-ballistic information transport mechanisms
are available, the information and entropy can potentially be encoded in streams
of photons moving through optical fibers or evacuated tubes, with extremely low
levels of attenuation.

But other than these factors, we feel we have taken all the important physical
limitations into account, and that the performance real physical implementation
of the R3M can scale exactly as well as would be predicted from this model, up
to extremely large scales.

5.4 Optimality

We believe that the R3M is an asymptotically optimal classical model of com-
putation, because it apparently can efficiently simulate any classical computer.
However physical space is used inside any computer, with a particular spatial
arrangement of components for memory, logic, communication, or heat removal,

we can just allocate PEs in corresponding locations of the R3M to perform the
same functions, with at most a constant factor overhead due to the fact that
each PE only devotes only some constant fraction of its volume, rather than all
of its volume, to each of these functions. Even parts of a computer that don’t
produce any measurable entropy can be simulated by PEs that have their cycle
times turned way up so that they are essentially doing nothing.

The only classical ability that the R3M may be lacking is the ability of
chemical systems to move a packet of information (embodied in a molecule, for
example) randomly around a space, with no generation of entropy (other than
in the position of the molecule) until the packet encounters another piece of
information with which it can interact.

It is currently unclear how this sort of behavior can be simulated by anything
other than a chemical system in an entropically-efficient fashion. However, it is
also unclear whether this means of interaction actually allows any asymptotically
more efficient computations than could be achieved by algorithms that bring
information together in a more controlled way.

As another caveat, our claim of asymptotic optimality says nothing about
the size of the constant factor inefficiencies in a given reversible implementa-
tion compared to alternative implementations of non-R3M models. Even though
chemical systems may turn out to be no faster asymptotically than an elec-
tronic R3M, they may be a significant constant factor faster than an R3M on
the problems to which they are most suited, at least until electronic technology
approaches the molecular scale as well.

In conclusion of this section, we feel that the R3M model proposed above,
although still fairly abstract and sketchy, meets all the goals set forth at the
start of this section and is therefore a good candidate for an optimally scalable
classical model of computation.

6 Conclusion

In this paper we have presented a strong argument, based on fundamental
physical constraints, that at least for large instances of certain classes of (non-
quantum) computations, a computer based on reversible primitive operations is
faster than any computer that is not.

Reversible computers that demonstrate this performance improvement can
actually be implemented by using the SCRL circuit techniques of Younis and
Knight [18, 17] together with commercially available VLSI fabrication processes.
Large 3-D arrays of reversible processors of this type (perhaps several meters
across) can perform physical simulations faster than any conventional computer
of comparable size.

Based on these insights, we have proposed a general-pupose architecture and
abstract model of computation called the Reversible 3-D Mesh. The model ap-
parently permits expressing any physically possible scheme for the storage, ma-
nipulation and transport of both information and the entropy that is inevitably

produced whenever information is discarded. We conjecture that therefore the
model can solve any class of problems using asymptotically no more time or
space than any other non-quantum architecture.

6.1 Future Work

Much work along these lines of course remains to be done. The specification of
the operation of individual processing elements in the R3M was intentionally left
vague. Just about any universal reversible processor would suffice, but some may
be much more convient to program, or more efficient by a constant factor, than
others. The best compromise is currently unclear. But a detailed, if tentative, PE
specification might be a good starting point for the exploration of these issues.

One very big area for future study is to try optimizing parallel algorithms
for various problems to run on the R3M model. Due to the nature of the R3M,
this is somewhat like designing specialized hardware to solve the problem, in
that one must think about the physical location of information and how it flows
through the system. The R3M model makes sure that one does not forget about
the constraints imposed by the speed of light and the laws of thermodynamics.

One important advance would be a high-level programming language for
expressing these “physical” algorithms. Such a language would do for the design
of physical algorithms what current programming languages do for the design
of ordinary serial algorithms. The language would provide ways of expressing
new high-level abstractions of different ways of organizing the physical flow of
information.

And of course, work is needed on implementation technologies. The “entropy
coefficient” of current reversible technologies is much too high. However, even
with current technology it could be a useful exercise to actually build a large
R3M so that people could experiment with programming it.

Finally, the classical approach of this paper begs the question, what about
quantum computers? The research on quantum computers is extremely interest-
ing, and if implementation technologies get to the point where the decoherence
times are long enough to permit error correction techniques to be applied, we
expect that in the long run the asymptotically fastest machines will be quantum
computers.

But locality and entropy are realities of quantum mechanics as well as of clas-
sical physics, so arguments analogous to those in this paper should still apply,
and so if quantum computation works out, we expect that the optimal architec-
ture will likely be a quantum reversible 3-D mesh, that directly generalizes our
current R3M model.

References

1. C. H. Bennett. Logical reversibility of computation. IBM J. Research and Devel-
opment, 6:525-532, 1973.

2. C. H. Bennett. The thermodynamics of computation, a review. Int’l J. Theoretical
Physics, 21(12):905-940, 1982.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Gianfranco Bilardi and Franco Preparata. Horizons of parallel computation. Tech-

nical Report CS-93-20, Brown University, May 1993. http://www.cs.brown.edu/
publications/techreports/reports/C5-93-20.html.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Electrical Engineering and Computer Science Series. MIT
Press/McGraw Hill, 1990.

Michael P. Frank. Quantum computation primitives. Area exam paper, http://
www.ai.mit.edu/ mpf/qcpaper.html, February 1996.

Michael P. Frank and M. Josephine Ammer. Separations of reversible and irre-
versible space-time complexity classes. Extended abstract to be submitted to
CCC-98. http://www.ai.mit.edu/ mpf/rc/memos/M06_oracle.html, 1997.

E. F. Fredkin and T. Toffoli. Design principles for achieving high-performance
submicron digital technologies. DARPA Proposal, November 1978.

E. F. Fredkin and T. Toffoli. Conservative logic. Int’l J. Theoretical Physics,
21(3/4):219-253, 1982.

W. Daniel Hillis. New computer architectures and their relationship to physics or
why computer science is no good. Intl J. Theoretical Physics, 21(3/4):255-262,
1982.

R. Landauer. Irreversibility and heat generation in the computing process. IBM
J. Research and Development, 5:183-191, 1961.

Y. Lecerf. Machines de Turing réversibles. Insolubilité récursive en n € N de
I’équation u = 8", ou 8 est un “isomorphisme de codes”. Comptes Rendus hebdo-
madaires des seances de U'academie des sciences, 257:2597-2600, 1963.

Ralph C. Merkle. Two types of mechanical reversible logic. Nanotechnology, 4:114—
131, 1993.

Peter W. Shor. Algorithms for quantum computation: Discrete log and factoring.
In Foundations of Computer Science, Proc. 35th Ann. Symp., pages 124-134. IEEE
Computer Society Press, 1994.

Tommaso Toffoli and Norman Margolus. Cellular Automata Machines: A New
Environment for Modeling. MIT Press, 1987.

Paul M. B. Vitanyi. Locality, communication and interconnect length in multi-
computers. SIAM J. Computing, 17:659-672, 1988.

Paul M. B. Vitdnyi. Physics and the new computation. In Mathematical Founda-
tions of Computer Science, Proc. 20th Int’l Symp. (MFCS), volume 969 of Lecture
Notes in Computer Science, pages 106-128. Springer-Verlag, 1995. http://wuw.-
cwi.nl/"paulv/physics.html.

S. G. Younis. Asymptotically Zero Energy Computing Using Split- Level Charge
Recovery Logic. PhD thesis, MI'T Artificial Intelligence Laboratory, 1994.

S. G. Younis and T. F. Knight, Jr. Asymptotically zero energy split-level charge
recovery logic. In International Workshop on Low Power Design, pages 177-182,
1994.

