255

Appendix B

The Pendulum instruction set
architecture (PISA)

This appendix gives a detailed description of the assembly language instruction set
for the Pendulum reversible microprocessor currently being fabricated by Carlin Vieri
[150]. Some reversible instruction set issues encountered during the development of
this instruction set (which I assisted Vieri with) were discussed in §8. The version of
the instruction set described here was the target for the compiler described in §8.4.3
and appendix D.

Vieri’s thesis describes these instructions at a more detailed level, that gives the
precise instruction word layout for purposes of machine code assembly and instruction
decoding in his real hardware implementation. For our purposes of testing compiler
techniques, such details were unimportant. Thus, in this reference we only describe
the instructions from an assembly language programmer’s point of view.

B.1 Overall organization

The PISA instruction set can be divided into three categories: reversible artih-
metic/logical operations, ordinary branch instructions, and special instructions.

The set of arithmetic/logical operations is designed to be logically complete, yet
purely reversible. To achieve this, the results of operations are generally XOR’ed into
separate destination registers, an operation which can be inverted by simply repeat-
ing it. Certain “non-expanding” operations can be performed reversibly without a
separate destination register.

As for the branch instructions, these are designed to be used in pairs, where
each branch instruction points to a corresponding branch that points back to the
original instruction, as per the discussion in §8.2.2. Given this, one way to implement
branches reversibly is to have the branch instruction add its offset into a special



256 APPENDIX B. THE PISA ARCHITECTURE

Key:

rsd,rt = 5-bit register identifier.
No-Op if rsd is same reg as rt.

imm,amt = 16 bit signed immediate
[imm] = imm sign-extended to 32 bits

"Non-expanding" arith./logical operations:

Mnem. Args. Forwards behavior
NEG rsd rsd = -rsd

ADD rsd,rt rsd += rt (mod 2°32)
ADDI rsd,imm rsd += [imm] (mod 2°32)
SUB rsd,rt rsd -= rt (mod 27°32)
X0R rsd,rt rsd "= rt

XORI rsd,imm rsd "= [imm]

RL rsd,amt rsd = rsd rol amt
RLV rsd,rt rsd = rsd rol rt

RR rsd,amt rsd = rsd ror amt
RRV rsd,rt rsd = rsd ror rt

Figure B-1: “Non-expanding” arithmetic/logical operations in the 32-bit simula-
tor/compiler version of the PISA instruction set.




B.1. OVERALL ORGANIZATION

Key:

rd,rs,rt = b-bit register identifier.
No-Op if rd is same reg as rs or rt.

imm,amt = 16 bit signed immediate
[imm] = imm sign-extended to 32 bits

"Expanding" arith./logical operations:

Mnem. Args. Forwards behavior
ANDX rd,rs,rt rd "= rs&rt

ANDIX rd,rs,imm rd "= rs&[imm]

NORX rd,rs,rt rd "= “(rs|rt)

ORX rd,rs,rt rd "= rs|rt

ORIX rd,rs,imm rd "= rs|[imm]

SLLX rd,rs,amt rd "= rs<<amt

SLLVX rd,rs,rt rd "= rs<<rt

SLTX rd,rs,rt rd "= (rs<rt)?1:0
SLTIX rd,rs,imm rd "= (rs<imm)?1:0
SRAX rd,rs,amt rd "= rs>>amt

SRAVX rd,rs,rt rd "= rs>>rt

SRLX rd,rs,amt rd "= (unsigned)rs>>amt
SRLVX rd,rs,rt rd "= (unsigned)rs>>rt

257

Figure B-2: “Expanding” arithmetic/logical operations in the PISA instruction set.




258 APPENDIX B. THE PISA ARCHITECTURE

Key:

rd,ra,rb = 5-bit register identifier.

off = 16 bit signed offset

loff = 26 bit signed offset

dir = +1/-1 bit where +1=forward, -l=reverse
BR = internal "branch register"

Branch instructions:

BEQ ra,rb,off if ra=rb, BR+=off*dir
BGEZ rb,off if rb>=0, BR+=offx*dir
BGTZ rb,off if rb>0, BR+=off*dir
BLEZ rb,off if rb<=0, BR+=offx*dir
BLTZ rb,off if rb<0, BR+=offx*dir
BNE ra,rb,off if ral!=rb, BR+=offxdir
BRA loff BR+=loff*dir

RBRA loff dir=-dir, BR+=loff*dir
SWAPBR r r<->BR

PC update between instructions:
if (BR=0) pc+=dir else pc+=BR*dir

Memory & I/0 instructions:

EXCH rd,ra rd <-> mem[ra]

READ ra ra "= next word from input str.
SHOW ra Copies ra to output stream.
EMIT ra Emit ra to garbage stream.

Figure B-3: Branching, memory access, and input/output operations in the PISA
instruction set.

“branch register” which is normally zero. Between instructions, if the branch register
is non-zero, the program counter increments by the branch register value, instead of
by the normal 1 instruction. Then the branch at the destination executes, canceling
out the value stored in the branch register and resuming normal execution.

In this scheme, even if the programmer forgets to put in the branch at the destina-
tion, the resulting behavior will still be reversible. But it will not be useful behavior:
the program counter will jump forward through the program in repeated leaps, of size
equal to the original offset.

To implement subroutine calls, the branch destination can be the special SWAPBR
instruction, which exchanges the branch register with an empty register. The body of
the subroutine negates the register, so when the subroutine hits the next SWAPBR



B.2. LIST OF INSTRUCTIONS 259

it branches back to the location it came from; the branch at that location cancels out
the branch register and the processor continues sequentially. SWAPBR can also be
used in a complementary way to perform switch statements.

All memory access happens through the EXCH instruction which exchanges a reg-
ister with a variable memory location. There is an interesting case here, in which an
EXCH instruction tries to exchange itself with a memory location. The machine can
be designed to do nothing in such a case. Or, if the instruction fetch/unfetch mech-
anism works via an exchange, the register will actually be exchanged with the single
constantly-moving value that sits in the instruction register between instructions, and
in the current PC location in memory during instructions.

The processor direction can be reversed in software using the special RBRA (re-
versing branch) instruction, which toggles the processor direction bit while it is per-
forming BRA functionality. This allows subroutines to be called either forwards or
in reverse, thus reducing the need for repeated code.

Special instructions to perform reversible output are also available—the SHOW
instruction which just exports a copy of a register, and the EMIT instruction which
actually reversibly sends the information in the register out of the processor to what-
ever system it is embedded in. Input instructions could also be defined, and there
could be two types: a SEE instruction which just XOR’s an input word into a regis-
ter, but does not consume it (the external system would be responsible for disposing
of the original) and a TAKE instruction which would reversibly consume the outside
information and bring it into a register, would have to be initially clear. Another
option would just be a single IOEX instruction which simply exchanges a register
with the value currently present in the external I/O system, which could then move
the old value to its output, and move a new value into place from its input.

Finally, there are START /FINISH instructions for marking the start/endpoints of
programs when running in the simulation environment. Presumably, a real processor
would always be running its operating system, and would never need to halt.

Let us now give all the instructions, in a reference format.

B.2 List of Instructions

Figures B-1, B-2, and B-3 list the name, arguments, and forwards behavior of all the
instructions in the 32-bit version of the PISA instruction set that was used in the
Pendulum simulator and the R language compiler.



260 APPENDIX B. THE PISA ARCHITECTURE

B.3 Arithmetic/logical ops

ADD Add one register into another.

Usage: ADD regy regs
Arguments:

regqs — The destination register.

regs — The source register.
Description:

Adds the value of register regs into register reg,, that is, modifies reg,; be equal
to the previous value of (regy + reg,) mod 232. Note that this operation is inherently
reversible, no matter the previous values of regy and reg,. It is inverted by SUB with
the same arguments.

ADDT Add an immediate value into a register.

Usage: ADDI regy imm

Arguments:

regq — The destination register.

imm — The immediate value to be added into reg,.
Description:

Sign-extends the immediate 16-bit value imm to 32 bits and adds it into regg.
That is, regy + (regy + imm) mod 232. Note that this operation is inherently re-
versible, no matter the previous value of reg,. It is inverted by another ADDI with
the immediate value negated, or by doing NEG of reg; followed by the identical
ADDI, followed by another NEG of regy.

ANDX Exclusive-OR the result of an AND into a register.

Usage: ANDX regy Te€gs1 T€gso

Arguments:



B.3. ARITHMETIC/LOGICAL OPS 261

regq — The destination register.

regs; — The first source operand.

regss — The second source operand.
Description:

Computes the bitwise logical AND of the contents of regy; and reg,,, and exclusive-
OR’s the result into register regy. That is, regy < regqs ® (regs1 A regse). Note that
due to the XOR, this operation is inherently reversible, no matter the previous values
of the registers. It is inverted by repeating the exact same instruction again. Note
also that plain AND may be emulated by letting regy be a register that was previously
0. ANDX corresponds to 32 Toffoli gates operating in parallel on the corresponding
bits of the 3 operands.

ANDIX XOR an AND with an immediate value into a register.

Usage: ANDIX regq regs imm
Arguments:

regq — The destination register.
regs — The source register.

imm — The immediate value to AND with.
Description:

Like ANDX, except the source register is AND’ed with the immediate value imm
instead of with a second source register.

NORX Exclusive-OR the result of a NOR into a register.

Usage: NORX regy 7Tegs1 T€gso

Arguments:
regqs — The destination register.
regs; — The first source operand.
regso — The second source operand.

Description:



262 APPENDIX B. THE PISA ARCHITECTURE

Computes the bitwise logical NOR of the contents of regy; and reg,s, and exclusive-
OR’s the result into register regy. That is, regy «— regqs ® (regs1 V regse). Note that
due to the XOR, this operation is inherently reversible, no matter the previous values
of the registers. It is inverted by repeating the exact same instruction again.

For no particular reason, there are no corresponding NORIX, NANDX, or NAND-
IX instructions. I believe this was just to keep the instruction set smaller. But NORX
itself is not strictly necessary either, since one can emulate it by using ORX and then
XORTI’ing —1 into the result.

NEG Two’s-complement negate the given register.

Usage: NEG reggq
Arguments:
regsq — The source/destination register.

Description:

Replace the contents of regsy with its (two’s complement) negative. That is,
regsq < (232 — regyq) mod 232, Note that this operation is inherently reversible. It is
its own inverse.

ORX Exclusive-OR the result of an OR into a register.

Usage: ORX regy regsi Tegss
Arguments:

regq — The destination register.
regs; — The first source operand.

regso — The second source operand.

Description:

Computes the bitwise logical OR of the contents of regs; and reg s, and exclusive-
OR’s the result into register regy. That is, regy < regqs ® (regs1 V regse). Note that
due to the XOR, this operation is inherently reversible, no matter the previous values
of the registers. It is inverted by repeating the exact same instruction again. Note
also that plain AND may be emulated by letting reg, be a register that was previously
0.

ORIX XOR an OR with an immediate value into a register.



B.3. ARITHMETIC/LOGICAL OPS 263

Usage: ORIX regy regs imm
Arguments:

regq — The destination register.
regs — The source register.

imm — The immediate value to AND with.
Description:

Like ORX, except the source register is AND’ed with the immediate value imm
instead of with a second source register.

RL Rotate a register left by a fixed number of bits.

Usage: RL regsq amt
Arguments:

regsq — The source/destination register.

amt — The immediate number of bits to rotate by.
Description:

Rotate the bits in register regsy left (that is, in the direction from least-significant
positions to most-significant positions) by the given number of places (0-31). Bits
rotated off the left end of the word rotate back onto the right end. RL is inherently
reversible; it is inverted by RR amt, or by RL’ing by the amount (32 — amt) mod 32.

RLV Rotate a register left by a variable number of bits.

Usage: RLV regsqy reg:
Arguments:

regsq — The source/destination register.

reg; — The register giving the number of bits to rotate by.

Description:



264 APPENDIX B. THE PISA ARCHITECTURE

Rotate the bits in register regsq left (that is, in the direction from least-significant
positions to most-significant positions) by the number of places given by reg; mod 32.
Bits rotated off the left end of the word rotate back onto the right end. RLV is
inherently reversible; it is inverted by RRV.

RR Rotate a register right by a fixed number of bits.

Usage: RR regsq amt
Arguments:

regsa — The source/destination register.

amt — The immediate number of bits to rotate by.
Description:

Rotate the bits in register regsq right (that is, in the direction from most-significant
positions to least-significant positions) by the given number of places (0-31). Bits
rotated off the right end of the word rotate back onto the left end. RR is inherently
reversible; it is inverted by RL amt, or by RR’ing by the amount (32 — amt) mod 32.

RRV Rotate a register right by a variable number of bits.

Usage: RRV regsq reg:
Arguments:

regsq — The source/destination register.

reg; — 'The register giving the number of bits to rotate by.
Description:

Rotate the bits in register regsq right (that is, in the direction from most-significant
positions to least-significant positions) by the number of places given by reg; mod 32.
Bits rotated off the right end of the word rotate back onto the left end. RRV is
inherently reversible; it is inverted by RLV.

SLLX XOR with result of shifting a register left logically by a
fixed number of bits.

Usage: SLLX regy regs amt



B.3. ARITHMETIC/LOGICAL OPS 265

Arguments:
regqs — The destination register.
regs — The source register.

amt — The immediate number of bits to shift by.
Description:

Logically shifts the given register left by amt, filling in 0’s on the right, and XOR’s
the result into the destination register reg,. Note that since the shift operation is
information-losing, we cannot put the result back into the same register. Instead, we
XOR the result into a register as with NANDX and other operations.

SILLVX XOR with result of shifting a register left logically by a
variable number of bits.

Usage: SLLVX regq regs reg:

Arguments:
regqs — The destination register.
regs — The source register.

reg; — Register specifying amount to shift by.
Description:

Like SLLX but with a variable number of bits. See RLV.

SRAX XOR with result of shifting a register right
arithmetically by a fixed number of bits.

Usage: SRAX regy regs amt

Arguments:
regq — The destination register.
regs — The source register.

amt — The immediate number of bits to shift by.

Description:



266 APPENDIX B. THE PISA ARCHITECTURE

Arithmetically shifts the given register right by amt, filling in with copies of the
leftmost bit, and XOR’s the result into the destination register regy. Note that
since the shift operation is information-losing, we cannot put the result back into the
same register. Instead, we XOR the result into a register as with NANDX and other
operations.

XOR with result of shifting a register right
SRAVX arithmetically by a variable number of bits.

Usage: SLLVX regy regs reg:

Arguments:
regqs — The destination register.
regs — The source register.

reg; — Register specifying amount to shift by.
Description:

Like SRAX but with a variable number of bits. See RLV.

SRILX XOR with result of shifting a register right logically by
a fixed number of bits.

Usage: SRLX regy regs amt

Arguments:
regq — The destination register.
regs — The source register.

amt — The immediate number of bits to shift by.
Description:

Logically shifts the given register right by amt, filling in 0’s on the left, and XOR’s
the result into the destination register regy. Note that since the shift operation is
information-losing, we cannot put the result back into the same register. Instead, we
XOR the result into a register as with NANDX and other operations.

SRLVX XOR with result of shifting a register right logically by
a variable number of bits.



B.3. ARITHMETIC/LOGICAL OPS 267

Usage: SRLVX regy regs reg:

Arguments:
regq — The destination register.
regs — The source register.

reg; — Register specifying amount to shift by.

Description:

Like SRLX but with a variable number of bits. See RLV.

SUB Subtract one register from another.

Usage: SUB regy regs
Arguments:

regq — The destination register.

regs — The source register.
Description:

Subtracts the value of register reg, from register regy, that is, modifies reg, be
equal to the previous value of (regq — regs + 232) mod 232. Note that this operation
is inherently reversible, no matter the previous values of regy and reg,. It is inverted
by ADD with the same arguments.

X0OR Exclusive-OR one register into another.

Usage: XOR regy regs
Arguments:

regqs — The destination register.

regs — The source register.

Description:

Exclusive-OR reg, into regy, that is, sets regy equal to regy @ reg,. This is a
self-reversible operation.

XORI Exclusive-OR an immediate value into a register.



268 APPENDIX B. THE PISA ARCHITECTURE

Usage: XORI regy imm

Arguments:

regq — The destination register.

1mm — The immediate value to XOR with.
Description:

Exclusive-OR the 16-bit immediate value tmm into regy, that is, sets regy equal
to regq @ vmm. Self-reversible.

B.4 Ordinary branches

BEQ Branch if equal.

Usage: BEQ reg, regy of f
Arguments:

regq., regy — Registers to compare.

of f — Immediate offset.
Description:

If the contents of registers reg, and reg, are equal, arrange to branch to an in-
struction of f steps ahead of the current instruction. That is, add the signed 16-bit
value of f into the branch register. The destination must be a branch pointing back
to the current location, or a SWAPBR.

BGEZ Branch if greater than or equal to zero.

Usage: BGEZ reg, of f
Arguments:

reg, — Register to compare.

of f — Immediate offset.

Description:



B.4. ORDINARY BRANCHES 269

If the value in register reg,, interpreted in two’s complement form, is greater than
or equal to zero (that is, if its high bit is 0), then branch to an instruction of f
steps ahead of the current instruction. That is, add the signed 16-bit value of f into
the branch register. The destination must be a branch pointing back to the current
location, or a SWAPBR.

BGTZ Branch if greater than zero.

Usage: BGTZ reg, of f
Arguments:

reg, — Register to compare.

of f — Immediate offset.
Description:

If the value in register reg,, interpreted in two’s complement form, is greater than
zero (that is, if it is not zero but its high bit is 0), then branch to an instruction of f
steps ahead of the current instruction. That is, add the signed 16-bit value of f into
the branch register. The destination must be a branch pointing back to the current
location, or a SWAPBR.

BLEZ Branch if less than or equal to zero.

Usage: BLEZ reg, of f
Arguments:

reg, — Register to compare.

of f — Immediate offset.
Description:

If the value in register reg,, interpreted in two’s complement form, is less than or
equal to zero (that is, if it is zero or its high bit is 1), then branch to an instruction
of f steps ahead of the current instruction. That is, add the signed 16-bit value of f
into the branch register. The destination must be a branch pointing back to the
current location, or a SWAPBR.

BLTZ Branch if less than zero.



270 APPENDIX B. THE PISA ARCHITECTURE

Usage: BLTZ reg, of f
Arguments:

reg, — Register to compare.

of f — Immediate offset.
Description:

If the value in register reg,, interpreted in two’s complement form, is less than
zero (that is, if its high bit is 1), then branch to an instruction of f steps ahead of
the current instruction. That is, add the signed 16-bit value of f into the branch
register. The destination must be a branch pointing back to the current location, or
a SWAPBR.

BNE Branch if not equal to zero.

Usage: BNE reg, regy of f
Arguments:

regq, Tegy — Registers to compare.
of f — Immediate offset.

Description:

If the contents of registers reg, and reg, are equal, then branch to an instruction
of f steps ahead of the current instruction. That is, add the signed 16-bit value of f
into the branch register. The destination must be a branch pointing back to the
current location, or a SWAPBR.

BRA Unconditional branch.

Usage: BRA loff
Arguments:
lof f — Long immediate offset.

Description:



B.5. SPECIAL INSTRUCTIONS 271

Unconditionally branch to a location lof f steps ahead of the current instruction.
That is, add the signed value lof f into the branch register. The value lof f is a signed
long immediate value, with more bits than the short offsets in the various conditional
branches above. The exact number of bits depends on the instruction encoding and
the number of bits reserved for opcodes. The destination must be a branch pointing
back to the current location, or a SWAPBR.

B.5 Special instructions

EXCH Exchange a register with a memory cell.

Usage: EXCH regy reg,
Arguments:

regqs — The data register.

reg, — The address register.
Description:

Exchanges the contents of the given data register reg; with the contents of the
RAM memory cell at the 32-bit address given in register reg,. If the address given
happens to be the address of the EXCH instruction being executed, the hardware
may treat this as a special case, and for example, ignore the instruction. Whatever
it does, it must be reversible, however.

SWAPBR Exchange register with branch register.

Usage: SWAPBR reg
Arguments:

reg — Register to swap with the branch register.
Description:

Swap the contents of register reg with the contents of the branch register. This
instruction is useful at the entry/exit points of subroutines and switch statements.

RBRA Direction-reversing unconditional branch.



272 APPENDIX B. THE PISA ARCHITECTURE

Usage: RBRA [of f
Arguments:

lof f — Long immediate offset.
Description:

Like BRA, but also toggles the processor direction bit. After the branch is taken,
the processor will proceed in the opposite direction from the one it was traversing
originally. Useful for making reverse subroutine calls.

READ Copy information from input device.

Usage: READ reg
Arguments:

reg — Register to read data into.
Description:

This instruction XORs the next word of data from the processor’s canonical input
device into register reg. In a multiprocessing architecture, this might be a means to
receive information from the interprocessor communication network.

SHOW Copy information to output device.

Usage: SHOW reg
Arguments:

reg — Register whose contents to show.
Description:

This instruction copies the information in register reg and sends the copy to the
processor’s canonical output device. In the Pendulum simulator, this is used to echo
data to the standard output stream, for viewing program output. In a multiprocess-
ing architecture, this might be a means to send information into the interprocessor
communication network.

EMIT Emit information from the processor.



B.5. SPECIAL INSTRUCTIONS 273

Usage: EMIT reg
Arguments:

reg — Register whose contents to emit.
Description:

Like SHOW, but moves the data out of reg, instead of making a copy. This is
presumed to represent the explicit, reversible removal of unwanted data from the pro-
cessor to an entropy-removal mechanism. This mechanism might be a sub-processor
that first compresses the garbage stream, then erases it using as little energy as possi-
ble. Or, it might be a mechanism for reversible, digitally transmitting the information
to the edge of a multiprocessor mesh, and then dissipating it there. Or, it might be
another mechanism for moving information out to an interprocessor communication
network.

START / FINISH End-points for computation.

Usage: START
FINISH

Arguments:

Description:

These instructions merely mark the start and end of a program, for ease of sim-
ulation. They could be used in a real processor: FINISH could halt the processor,
and START could halt if running in reverse. Note, however, that actually halting
the processor is an irreversible event, since one has lost the information about how
long ago the processor halted. One should be careful not to build a very large, dense
reversible mesh processor that will explode when all the processors simultaneously
reach the FINISH instruction, as a result of each processing node dissipating the
ksT In 2 energy to clear the bit of information that tells it that it is still running.

One could fix this problem by having FINISH merely switch to a mode where
the processor starts counting the number of time-steps since it halted. When the
counter runs out of space, however, the processor must either erase information, or
start running again.



274 APPENDIX B. THE PISA ARCHITECTURE



