275

Appendix C

The R reversible programming
language

This appendix gives a detailed description of the “R” reversible programming lan-
guage we developed, which we mentioned in §8.4.2.

C.1 Introduction

R is a programming language for reversible machines. The language is currently very
incomplete and not particularly stable. This appendix documents the current state
of the language, to convey a feel for the language as it stands, and solicit feedback
regarding how the language should develop.

The R language compiler translates R source into Pendulum assembly code. In this
document we will also describe the workings of the R compiler. Currently the compiler
works by applying code transformations similar to macro expansions, to reduce high-
level constructs into successively lower level constructs until the expansion bottoms
out with Pendulum assembly language instructions.

Because of the many levels of constructs involved in this gradual transformation
process, the distinction between the constructs intended for end-use in R source pro-
grams and the intermediate constructs used internally by the compiler is currently
rather fuzzy. This document will attempt to separate user-level from compiler-level
constructs, but the status of constructs may change as the language evolves, and
currently there is nothing to prevent an R source program from using constructs at
all the different levels. However, the lower-level constructs are perhaps somewhat
more likely to change as the language and compiler evolve, so their use in application
programs is discouraged.



276 APPENDIX C. THE R PROGRAMMING LANGUAGE

C.2 What type of language is R?

R is like C in that it is (currently) a procedural language, not a strict functional
language, with data types and primitive operations centered around the two’s com-
plement fixed-precision integers and the corresponding arithmetic/logical operations
that are supported directly by the machine hardware. The language supports simple
C-like arrays, for loops, if statements, and recursive subroutines with arguments.

Reversibility of execution of R programs is guaranteed by the reversibility of the
assumed version of the Pendulum instruction set, so long the program does not use
the EMIT assembly-language instruction (which explicitly permits information to be
removed irretrievably from the processor). However, if the user wishes his programs
to run not only reversibly but correctly, he is responsible for ensuring that certain
conditions are met by his code. Currently, these conditions are not checked automat-
ically. If the conditions are not met, then the program will silently proceed anyway,
with nonsensical (but still reversible) behavior. However, this is not as fatal as it
sounds, because the reversibility of execution allows the errant program to be de-
bugged, after the misbehavior is discovered, by running it in reverse from the error
to see what caused it.

C.3 Overview of R Syntax

R programs are currently represented using nested, parenthesized lists of symbols and
numbers, as in Lisp. Similarly to Lisp, the first element of a list may be a symbol that
identifes the kind of construct that the list is representing, for example, a function
definition, an if statement, a let construct for variable binding. However, in R,
currently some constructs may also be denoted using infix notation, in which the
identifying symbol is the second element of the list instead of the first. Many of these
infix lists have a C-like syntax and behavior, for example, the (a += b) statement
which adds b into a. Infix notation is also often used in subexpressions of a statement
which are intended to evaluate to a value, for example, (a + b) in the statement
(print (a + b)).

C.4 User-level Constructs

This section describes constructs that are intended for use in end-user R applications.



C.4. USER-LEVEL CONSTRUCTS 277

C.4.1 Program Structure

The executable portion of a program normally consists of a single defmain statement,
and any number of defsub statements. These statements may appear in any order.

defmain Define program’s main routine.

Syntax: (defmain progname

statement,
statementy, ... )
Elements:
progname — A symbol naming the program. The name should be a sequence

of letters and digits starting with a letter. It should be distinct from the
names of all subroutines and static data items in the program.

statement,, statement,, ... — Statements to be executed in sequence as
the main routine of the program.

Description:

The defmain statement is used to define the main routine of a program. It is
intended to appear as a top-level form, but may actually appear anywhere a statement
may appear. (If executed as a statement, it does nothing.) Currently there is no
“command line” or other argument list available to the program; it must either be self-
contained along with its data or explicitly read data from an input stream. Defmain
generates information in the output file that tells the run-time environment where to
begin executing. If there are zero or more than one defmain statements in a given
program, then the result of attempting to run the program is undefined.

Defmain currently also has the side effect of causing the entire standard library
to be included in the output program. Right now there is only one subroutine in the
standard library (named smf), so this is not too burdensome.

defsub Define subroutine.
Syntax: (defsub subname (arg; argy ... )

statement,

statementy, ... )

Elements:



278 APPENDIX C. THE R PROGRAMMING LANGUAGE

subname — A symbol naming the subroutine. The name should be a se-
quence of letters and digits starting with a letter. It should be distinct
from the names of the main routine, all other subroutines, and all static
data items in the program.

arg,, args, ... — Formal argument names, with the same alphanumeric for-
mat. These names are not required to be distinct from any other names
in the program. However a single subroutine cannot have two arguments
with the same name. Currently, the compiler does not support subroutines
taking more than 29 arguments.

statement,, statement,, ... — Statements to be executed in sequence as
the body of the subroutine.

Description:

Defsub statements are used to define subroutines within a program. They are
intended to appear only as top-level forms, but may actually appear anywhere that a
statement may appear. (If executed as a statement, a defsub construct does nothing.)
If there are two defsub statements with the same subname in a given program, then
the result of attempting to execute that program is undefined.

The formal arguments may be accessed as read-write variables within the body of
the subroutine. On entry to the subroutine, the values of these variables are bound
to the values of the actual arguments that were passed in via the call statement in
the caller. The call statement must pass exactly the number of arguments required
by the subroutine or else the behavior of the subroutine is undefined. On exit, the
values of the argument variables become the new values of the actual arguments (see
the description of call).

Any subroutine may also be called in reverse; see rcall.

C.4.2 Control Structure

Within the program’s main routine and subroutines, the flow of execution is controlled
using call, rcall, if, and for statements.

Call, rcall Call or reverse-call subroutine.
Syntax: (call subname arg; args ... ) or
(rcall subname arg; args ... )

Elements:



C.4. USER-LEVEL CONSTRUCTS 279

subname — The name of the subroutine to call. If zero or more than one
subroutines with that name exist in the program, the result of the call is
undefined.

arg,, args, ... — Actual arguments to the subroutine. These may be vari-
ables, constants, or expressions, with restrictions described below. The
number of arguments must match the number of formal arguments listed
in the subroutine’s defsub statement.

Description:

A call or rcall statement is used to call a subroutine either forwards or in
reverse, with arguments. If a particular actual argument is a variable or a memory
reference, then the subroutine may actually change the value of its corresponding
formal argument, and the caller will see the new value after the call is completed. If
the argument is a constant or an expression, then it is an error for the subroutine to
return with the corresponding formal argument having a value that is different from
the value that the constant or expression evaluates to after the return. (Nonsensical
behavior will result.)

Rcall differs from call only in that with rcall, the subroutine body is executed
in the reverse direction from the direction in which the rcall is executed.

if Conditional execution.

Syntax: (if condition then
statement,
statementy, ... )

Elements:

condition — An expression representing a condition; considered “true” if its
value is non-zero.

statement,, statement,, ... — Statements to execute if the condition is
true.

Description:

An if statement conditionally executes the body statements if the condition ex-
pression evaluates to a non-zero value. If the value of the condition expression ever
has a different value at the end of the body from the value it had at the beginning,
then program behavior after that point will in general be nonsensical.

The top-level operation in the condition expression may be a normal expression
operation, or one of the relational operators =, <, >, <=, >= |= which have the



280 APPENDIX C. THE R PROGRAMMING LANGUAGE

expected C-like meanings of signed integer comparison. These relational operators
are not currently supported for use in expressions in contexts other than the top-level
expressions in if conditions.

Actually the compiler does not yet support all the different relations with all of
the possible types of arguments even in if conditions. The if implementation in the
compiler needs some major rewriting.

In the future, if statements will also be allowed to appear in forms containing
else clauses, using the syntax

(if condition
tf-statement, if-statementy ...
else
else-statement, else-statement, ... ),

but this form of if is not yet implemented by the compiler.

for For loop; definite iteration.

Syntax: (for war = start to end

statement,
statementy ... )
Elements:
var — A variable name.
start — Start value expression.
end — End value expression.
statement,, statement,, ... — Statements to execute on each iteration.
Description:

A for statement performs definite iteration. Var must not exist as a variable at
the point where the for construct appears, but it may exist as a name of a static
data element, in which case this meaning will be shadowed during the for.

Before the loop, the start and end expressions are evaluated, and wvar is bound to
the value of start. The scope of var is the body of the for. On each iteration, the
body statements are executed. After each iteration, if var is equal to the value of end
which was computed earlier, the loop terminates; otherwise, var is incremented as a
mod-232 integer and the loop continues. After the loop, the start and end expressions
are evaluated again in reverse to uncompute their stored values.



C.4. USER-LEVEL CONSTRUCTS 281

It is an error for either the start or end expressions to evaluate to different values
after the loop than they do before the loop. If they do, program behavior afterwards
will be nonsensical. The same goes for any of their subexpressions.

Note that although for is intended for definite iteration, in which the number of
iterations is always exactly the difference between the initially-computed start and end
values, actually there is nothing to prevent the value of var from being modified within
the body, so that the number of iterations can actually be determined dynamically
as the iteration proceeds. One can thus construct “while”-like indefinite iteration
functionality using for as a primitive. However, this is inconvenient, so the language
will eventually explicitly include a while-like construct, though it does not do so
currently.

C.4.3 Variables

New local variables may be created and bound to values anywhere a statement may
appear, using the let statement.

let New variable binding.
Syntax: (let (war <- wal)
statement;
statement, ... )
Elements:
var — A new variable name. This name must not exist as a local variable

name at the point where the let statement occurs. However, it may exist
as the name of a static data item, in which case that meaning will be
shadowed within the body of the let.

val — An expression to whose value var will be bound.

statement,, statement,, ... — Statements to execute in the scope where
var is available as a variable.

Description:

Let creates a new local variable var and binds it to a value. The body of the let
may change the value of var, but the value of var at the end of the body must match
the value that the val expression has at the time the body ends. Otherwise program
behavior will be unpredictable thereafter. The wval expression is actually evaluated
twice, once forwards before the body, to generate the value to bind to var, and once
backwards after the body, to uncompute this value.



282 APPENDIX C. THE R PROGRAMMING LANGUAGE

Actually the current implementation of let does require the value of val and all
its subexpressions to remain the same at both the start and end of the body. Future
implementations may relax this restriction.

Other forms of the 1et construct currently exist, but are not currently documented
as user-level constructs.

C.4.4 Data Modification

Currently, R programs modify variables and memory locations using a variety of
vaguely C-like data modification constructs: ++, -, <=<, >=> += -= ~= <-> and
others not currently documented as user-level operations.

In general, it is an error for a data modification statement to modify a variable or
memory location whose value is used in any subexpressions of the statement. If this

happens, program behavior thereafter will be nonsensical.

++ Integer increment statement.

Syntax: (place ++)
Elements:

place — A variable or an expression denoting a memory reference.
Description:

The mod-23? integer word stored in place, which may be a variable or a memory
reference, is incremented by 1.

— (minus sign) Unary negate statement.

Syntax: (- place)
Elements:

place — A variable or an expression denoting a memory reference.
Description:

The integer word stored in place is negated in two’s complement fashion.

<=L, >=> Rotate left/right.



C.4. USER-LEVEL CONSTRUCTS 283

Syntax: (place <=< amount)
(place >=> amount)

Elements:
place — A variable or an expression denoting a memory reference.
amount — An expression for the amount to rotate by.
Description:

<=< rotates the bits stored in the given place to the left by the given amount.
Rotating left by 1 means the bit stored in most significant bit-location moves to
the least significant bit-location, and all the other bits shift over to the next, more
significant position. Rotating by some other amount produces the same result as
rotating by 1 amount times. >=> is the same but rotates to the right (exactly undoing
<=<).

+= -= Add/subtract statement.

Syntax: (place += walue)

(place -= walue)
Elements:
place — A variable, or an expression denoting a memory reference.
value — An expression for the value to add/subtract.
Description:
+= adds value into place, as an integer. -= subtracts value from place.
= Exclusive OR.
Syntax: (place ~= walue)
Elements:
place — A variable, or an expression denoting a memory reference.

value — An expression for the value to XOR.

Description:



284 APPENDIX C. THE R PROGRAMMING LANGUAGE

~= bitwise exclusive-OR’s value into place.

<-> Swap.

Syntax: (place; <-> placey)
Elements:

place;, place, — FEach is a variable or an expression denoting a memory ref-
eremnce.

Description:

<-> swaps the contents of the two places.

C.4.5 Expressions

Variables and constants count as expression, as do the more complex parenthesized
expressions described here. Expressions may be nested arbitrarily deeply. Parentheses
for all the subexpressions must all be explicitly present. Currently, all expression
operations are of the infix style, where the symbol for the operator appears as the
second member of the list; however new kinds of expressions may exist later.

Currently available expression operations include +, -, &, <<, >>, *, */ _ and
others for internal use by the compiler.
There are also relational operators =, <, >, <=, >=, != which may currently only

be used at top-level expressions in if conditions. They are not yet documented
individually yet, but they have the expected behavior of signed integer comparison.
Conceptually they return 1 if the relation holds, and 0 otherwise.

Inside expressions, only expression constructs may be used. Expression constructs
may never be used in place of statements.

Expressions are generally evaluated twice each time they are used, once in the for-
ward direction to generate the result, and once in the reverse direction to uncompute
it.

There is currently no way within the language to define a new type of expression
operator, but this may change later.

+,- Sum/difference expression.

Syntax: (wal; + waly)
(valy, - waly)

Elements:



C.4. USER-LEVEL CONSTRUCTS 285

val;, val, — Expressions for values to add.
Description:

Evaluates to the sum or difference of the values of the two sub-expressions taken
as mod-23? integers.

& Bitwise logical AND expression.

Syntax: (wal; & valsy)
Elements:

val;, val, — Expressions for values to AND.
Description:

Evaluates to the bitwise logical AND of the word values of the two sub-expressions.

<L, >> Logical left/right shift expression.

Syntax: (wal << amt)
(val >> amt)

Elements:

val — Expression for the value to be shifted.

amt — Expression for the amount to shift by.
Description:

This evaluates to the value of val logically shifted left or right as a 32-bit word,
by amt bit-positions.

* Pointer dereference expression.

Syntax: (* address)
Elements:
address — Expression that evaluates to a memory address.

Description:



286 APPENDIX C. THE R PROGRAMMING LANGUAGE

This evaluates to a copy of the contents of the memory location at the given
address. However, this expression may also be used as a place which may be modified
by any of the data-modification statements above, in which case the actual contents
of the location, not a copy, is modified.

It is an error for the contents of an address to be referred to by a subexpression
of a statement that modifies that same address; if this is done, behavior thenceforth
will be unpredictable.

*/ Fractional product expression.

Syntax: (integer */ fraction)

Elements:

integer — An expression whose value is taken as a signed integer.

fraction — An expression whose value is taken as fraction between -1 and 1.
Description:

This rather odd operator returns the signed 32-bit integer product of the two
values, taking one as a signed 32-bit integer and the other as a signed 32-bit fixed-
precision fraction between 0 and 1. Another way of saying this is that it is the product
of two integers, divided by 232. Or, it is the upper word of the 64-bit product of the
two integers, rather than the lower word.

This operation is useful for doing fixed-precision fractional arithmetic. It is used
by the single existing significant test program sch.r.

Since the Pendulum architecture naturally does not support this rather unusual
operation directly, the compiler transforms it into a call to the standard library routine
SMF (Signed Multiplication by Fraction). SMF is itself written in R, but for efficiency it
uses some optimized internal compiler constructs that are not yet intended for general
use.

_ (underscore) Array dereference expression.

Syntax: (array _ indez)
Elements:

array — Expression for the address of element 0 of an array in memory.

index — Expression for the index of the array element to access.



C.4. USER-LEVEL CONSTRUCTS 287

Description:

This type of expression evaluates to a copy of the contents of the element numbered
index in the sequential array of memory locations whose element number 0 is pointed
to by array. However, this expression may also be used as a place in any of the
data-modification statements, in which case it is the real array element that will be
modified, not just a copy of it.

It is an error for an array element or other memory location to be examined by a
subexpression of a statement that ends up modifying that location.

C.4.6 Static Data

Two constructs, defword and defarray, allow single words and regions of memory
to be named and initialized to definite values when the program is loaded.

defword Define a global variable.

Syntax: (defword name value)

Elements:
name — An alphanumeric symbol naming this variable. Must be distinct
from the names of routines and other static data items.
value — A 32-bit constant integer giving the initial value of the variable.
Description:

Defword is intended for use as a top-level form but actually it may appear any-
where a statement may appear. When executed as a statement it does nothing.

Defword defines the name name to globally refer to a particular unique memory
location, whose initial value when the program is loaded is value. This meaning of
name can be shadowed within subroutines that have name as a formal argument, or
within the body of a 1let statement that binds that name. The name can be used as
a place in data-modification statements.

Actually the name will only be recognized to refer to the memory location at
statements in the program that occur textually after the defword declaration.

def array Define a global array.

Syntax: (defarray name
valuey value; ... )



288 APPENDIX C. THE R PROGRAMMING LANGUAGE

Elements:
name — Unique alphanumeric name for the array.
valuey, value;, ... — Integer constants giving the initial values of all the

array elements.

Description:

Defarray is intended for use as a top-level form, but actually it may appear
anywhere a statement may appear. When executed as a statement it does nothing.

Defarray sets aside a contiguous region of memory, containing a number of words
equal to the number of value arguments, and defines the name name to globally (that
is, after the defarray) refer to the address of the first word in the region. The words
are initialized to the given values when the program is first loaded. Name can be used
as an array in array-dereference operations. It is a compile-time error to attempt to
change the value of name. However, name can be shadowed by subroutine arguments
and local variable declarations.

C.4.7 Input/Output

Currently there are no input constructs in R. However, there are two user-level out-
put constructs, printword and println. These are rather ad-hoc. The set of I/O
constructs is a part of R that is particularly likely to change in later versions of the
language.

pTr intword Output a representation of a word of data.

Syntax: (printword wal)
Elements:
val — An expression for the word to print.

Description:

Printword sends to the output stream a representation of the value of the wval
expression, as a 32-bit integer. Currently the representation consists of outputing the
value 0 followed by the given value, to distinguish the output from that produced by
println.

The wval expression is evaluated twice, once to compute the value and again to
uncompute it.

pTr intln Output a representation of a line-break delimiter.



C.5. EXAMPLE PROGRAMS 289

Syntax: (println)
Elements:

None.
Description:

Println sends to the output stream a representation of a line-break delimiter.
Currently this consists of outputing the single word 1.

C.5 Example Programs

Figure 8-3, p. 218 showed a simple example of a multiplication subroutine written in
R.

As an additional example of R programming style and of many of the user-level
constructs described above, appendix E, §E.3 (p. 376) shows the first significant R
test program, sch.r, in its entirety. The character “;” indicates a comment that
runs to the end of the line.

This program simulates the quantum-mechanical behavior of an electron oscillat-
ing at near the speed of light in a 1-dimensional parabolic potential well about 1
Angstrom (107'° m) wide. It takes about 1 minute to complete each 5 x 10722 sec-
ond long simulation step under the PENDVM Pendulum virtual machine emulation
program, running on a Sun SPARCstation 20.

An interesting feature of this program is that although it is perfectly reversible,
its outer loop can run for indefinitely long periods, without either slowing down or
filling up the memory with garbage data.

The current version of the compiler successfully compiles this program to correct
(though not optimally efficient) Pendulum code, which is shown in §E.4 (p. 378).
When run, the compiled program produces exactly the correct output.

C.6 Compiler Internals

Appendix D describes the R compilation infrastructure and documents the low-level
R constructs that are not recommended for prime time.

C.7 Conclusions

R is a pretty cool little language, but it has a long way to go. It would be nice to have
support for floating-point arithmetic, strings, structures with named fields, dynamic



290 APPENDIX C. THE R PROGRAMMING LANGUAGE

memory allocation, various built-in abstract data types, type checking and other error
checking, exception handling, etc., etc. Not to mention object-oriented programming.
It would be nice to have the option to use high-level irreversible operations, and have
the compiler deal intelligently with the garbage data.

But anyway, the above describes revision 0.0 of the language, as a proof of concept
and a starting point for further development.



