357

Appendix E

Reversible Schrodinger wave
simulation

This appendix gives the complete code for SCH, the reversible simulator of the Schro-
dinger wave equation that was mentioned in §8.5.6 (p. 221), and in §C.5 (p. 289). We
give the C, R, and PISA versions of the program.

E.1 Derivation of discrete update rule

Here we derive a naive approximate method for simulating Schrédinger’s equation in
discrete, reversible fashion. Later we will derive some alternatives.

A bit of history. Most of the following is original work, except that the final key
idea, for making the simulation exactly reversible, is something that I learned about
from Margolus in personal discussions. This trick apparently originated with Fredkin
and Barton in 1975, in the context of their own work (in collaboration with Richard
Feynman) on a discrete reversible Schrédinger equation update rule. (I was not aware
of this work when I reinvented part of it in the early versions of my own simulation.)
The story of the serendipitous discovery of this trick is told in Fredkin 1999 [63],
which also describes their version of the discrete rule in some detail.

Now, let us begin our derivation. We start with the full general form of the wave
equation when expressed in a state space in which the eigenstates correspond to
particle positions. It is possible to describe a system’s state space in many other
ways, but this way seems most straightforward and natural to those not immersed
in quantum physics. It also lends itself to visualization of the wave function on a
graphics display.



358 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

Here is the Schrédinger equation in its full glory:

Re~ 1 8 _ Y.

2 2, 83:?\11(36,15) +V(Z, 1)V (Z,t) = zhat\ll(aﬁ,t).
It requires some explanation for the general reader. 7 is Planck’s constant over 2,
1.055x 10734J-s. N is the number of positional degrees of freedom, 3n for n particles
in 3 dimensions. m; is the mass associated with the jth degree of freedom, e.g. in 3
dimensions the mass of particle |j/3]. Z is a vector of all particle position coordinates,
and z; is particular position coordinate. ¢ is time. V is a potential energy function
which is a function of the positions of all particles and optionally (if representing a
time-dependent potential) the time. ¥ is the wave function itself, a function of the
positions of all particles and of time; its value is generally a complex number with
both real and imaginary parts, ¥ = V¥ +i3W. The imaginary unit i = v/—1 appears
on the right-hand side of the equation. The magnitude of ¥ (Z, ), that is, R*¥ + 3% U,
is, when normalized, thought of as the probability density of finding the system in
state T at time t.

The important point to note, from the perspective of a dynamical simulation, is
that the equation describes how the wave function evolves over time, via the partial
derivative with respect to time that appears on the right side of the equation.

Now that we’ve seen the full form of the equation, let’s proceed to strip it down
to a slightly simpler form. First, we’ll get rid of the summation over the # vector;
since we are restricting ourselves for the moment to one particle in one dimension,
there is only one coordinate x, and only one mass m.

2 a2
—:—m%ﬁl(aﬁ,t) +V(z,t)¥(z,t) = ih%\ﬂ(x,t).
Next, rather than writing the (z,t) arguments to ¥ and V repeatedly, let them be
understood.
2 92
LA BN}
2m 0x? ot

Next, we rewrite partial derivative operators 0/0v as d,/dv where d, is a differen-
tial operator meaning “the infinitesimal change in the given quantity when variable
v changes by an infinitesimal amount dv and everything else is held constant”.

h_2 20 d,; v

- U= ih
2m dz? +V W dt

This notational change will allow us to extricate the differentials in the numerator



E.1. DERIVATION OF DISCRETE UPDATE RULE 359

and denominator of a partial derivative operator from each other.
Now, we solve for d; ¥, the t subscript reminding us that this is the d¥ that is
associated with dt in the original expression 0¥ /0t.

dt h? d20

¥ = — <—% 12 +V\If) . (E.1)
This equation gives us the infinitesimal change in ¥(z, t) at a point z as time increases
by an infinitesimal amount d¢ and the point z is held constant. This is the most direct
statement of how ¥ evolves over time.

Now we come to our first approximation. So far we have treated time and space
as continuous: dt means an infinitesimally small amount of time, and dx an infinites-
imally small distance in space. However, in our simulation we will discretize time and
space into points with a minimum, non-infinitesimal distance between them, so that
we only have to represent the state of the wave function at a finite number of points,
and so that when we advance to the “next” time, there will be a non-infinitesimal
change in the wave function state. We indicate this conceptual change by replacing
d with A, Az meaning the distance between our discrete points, At the distance
between our discrete times, and AW the change in ¥(z) in a time At.

AT 2 (2
¢ 2m Az?

At [ B2 AT
ih

+ vw) . (E.2)

The earlier equation with the differentials (equation E.1) expresses the fact that the
two sides of this equation with the deltas approach equality in the limit, as Az and
At approach zero. But hereafter in our derivation, we will treat the two sides as being
equal even though the deltas are not zero; that is our approximation.

We believe we can prove that this approximation is correct to second order, i.e.,
that as long as the real rate of change of ¥ is small during the entire interval At,
and if the minimum wavelength in the represented wave is significantly longer than
Az, then the difference between our computed AV and the actual AV will improve
quadratically, proportionately to the square of At/Az? as this ratio is decreased.

Now, before we can make further progress, we need to decide how to evaluate
the expression A2V at particular points z. In general, by A,q we mean the change
in quantity ¢, a function of v, when v changes by Av. However, how are we to
define A,q(vg) for a particular point v,? One symmetrical answer is that it is simply
q(vx + Av/2) — q(vp — Av/2).

Applying this to our particular case, we find (omitting still the ever-present ¢



360 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

argument):

A A
A2U(z) = A,T(z+ 7‘”) — A,V (z — 7‘5)

(U(x+ Az) = ¥(z)) — (V(z) — ¥(z — Ax))
= Uz + Az) + ¥(z — Az) — 2V ()
5 <\Il(:v +Az) + V(z - Az) \I!(:E)) '

2

And plugging this into the equation E.2 (considered as an equality) we get:

A (z) =

However, rather than sprinkling things like z + Az throughout our equations from
here on, let us take it as given that W is always evaluated at points that are separated
by integer multiples of Az, and so we can treat ¥ as a vector with elements indexed
by integers k. So hereafter we will replace ¥(z) by ¥y, ¥(z + Az) by Wy44, ete., and
similarly for V(z) as well.

At ( 12 (‘I’kﬂ + Vg

Ay = b\ Axim 2

— \I’k) + vk\I’k> .

Now, let’s play around with this expression algebraically, and collect together the
terms involving W:

AR (Upyr + Uy AtV
AV = — - v v
Lo ihAz?m ( 2 F)T T
Ath (W + 0, Ath AtV
= — v v
iAx?m ( 2 ) * iNg?m " * in "
Ath At I Vi
= —— (VU Wy — | —+=1]VY
2t1Ax%*m (Wers + L) + i (AQO * h ) g
iAth

: hi Vi
= m (\IIlc—i—l + \Ilk_l) — At (AJ?Q’ITL + f) \I/k

Next, to make the expression more concise, we introduce the following new quan-
tities to use as abbreviations:

AL
kK — h’

= , o = € + wpAt,
mAx? k + Wk



E.1. DERIVATION OF DISCRETE UPDATE RULE 361

and rewrite our formula in terms of them:
1€ .
At‘ljk = 5(‘11k_|_1 + \Ilkfl) - zak\Ilk.

But now, this is all just giving us A;U—the change in ¥ over a time At. How
exactly will this let us calculate W at some future time given W at the current time?

Well, using our earlier definition for A, we can expand the left hand side of the
equation as follows (reintroducing ¢ as an explicit argument):

Wyl + 50— Wil = 50 = (W (0 + s (1)) — i i),

If we solve this for W (t + At/2), we get

At AV 1 .
\Ilk(t + 7) = \Ifk(t - 7) + 5(\Ilk+1(t) + \Ilk_1(t)) — ZOék\I/k(t),
and if we now replace At everywhere with 2At¢ (a change which does not matter since
At was an arbitrarily chosen value already), including within the definitions of € and
oy, we get

\I’k(t + At) = \I’k(t — At) + ie(\Ika(t) + \I’k_l(t)) - 21ak\11k(t)

Now for conciseness we replace (t + At) as an argument with s + 1 as a subscript,
similarly to what we did earlier when we replaced (z + Az) with £ 4 1, and obtain

Wpsr1 = Ypoo1 + 0 (6(Wrr1,s + Y1) — 205Uk ) -

Well, there are a couple of important things to note about this equation. First
rather than deriving the state of the wave at the next time step s+ 1 from the state
at step s, the equation requires using the states at the two previous steps s and s — 1.
It’s a second order difference equation, and it’s of the form that Fredkin has shown to
always be totally reversible, given a numeric representation that supports a reversible
addition operation.

The second important point is that although the equation is complex, the real
part of W, ,; depends only on the real part of ¥, ; and the imaginary part of U,.
Specifically:

RUpop1 =RV o1 + S (204 Vp s — €(Wpgr,s + Pio1,)) (E.3)

and similarly, the imaginary part of U,,; depends only on the imaginary part of ¥,



362 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

and the real part of Ug:
%\Ilk,s—kl = %‘Ijk’S,1 — §R (2C¥k\I/k,5 — 6(\I/k+1,5 + \I/kfl,s)) (E4)

Therefore, if we consider the real components of W at all the even-numbered steps
s = 2n (for n an integer), and the imaginary components of ¥ at all odd-numbered
steps s = 2n + 1, we see that the evolution of those components is totally self-
contained, and we can ignore the real components at odd times, and the imaginary
components at even times, and thus work with only a single real number at each time
step. Let us do so, and define, for integers n, the real quantities

an = §R\Ilk,Qn

(\
\S‘I’k,2n+1-

=
3
Il

Then we can rewrite the equations (E.3 and E.4) above as two equations:

Xk,n—H = Xk,n + fk(jjn) (E5)
yk,n—H = y]c,n - fk(Xn—}-l);
where (for Q being either X’ or )) by Qn we mean the vector of all values 9y, and
where (now omitting the n subscript):

fk(é) = 204 Q) — €(Qpy1 + Qk—1)-

The update rule (E.5) lends itself to a particularly simple pseudo-code implementation
given reversible addition/subtraction instructions, as are the C language’s += and -=
operators when performed on integers:

X += [fO)

—

where the absence of the k subscript is intended to suggest application of each op-
eration to every element of the given vector. The n is implicit, and is no longer
needed; each value of X that is computed will implicitly represent the value of X two
time steps beyond the previous value that was computed and each value of ) that is
computed will implicitly represent the value of Y one time step beyond the previous
value of X and two time steps beyond the previously computed .



E.1. DERIVATION OF DISCRETE UPDATE RULE 363

This process of updating X and )7, can then be exactly undone by:

Y += [f(X)]
X —= [

So the above analysis gives us a method of reversibly updating two arrays, repre-
senting the real and imaginary parts of ¥ at successive times. Note that this does not
tell us both components of ¥ at either particular time, but if ¥ is changing gradually,
as it will be if At is sufficiently small, then the two components taken together will
be a fairly accurate representation of ¥’s complex value at either of the times.

We note that if there is actually only one spatial point k£ = 0, so that the “neigh-
boring” points £+ 1 and k£ — 1, are actually, in modulus 1 arithmetic, the same point
as k itself, then the above algorithm actually reduces to (letting X = &5, Y = )p):

Y —= LQO)()AtXJ,

which is an approximate circle-drawing algorithm, with the X’s and Y’s giving the
coordinates of points on (or near) a circle. It is essentially the same algorithm as
that described by Margolus in [93], §2.8.2, pp. 8284, with our energy-based quantity
2weAt = 2V, At/h representing a quantity which can be thought of as being approx-
imately the amount of change in the (X,Y’) vector per 2At¢ time, as a fraction of its
length. This quantity takes the place of the 2sin(w) quantity which plays the same
role in Margolus’s equation, determining there the angular change (in radians) of the
point (x4, y;) across a span of 2 time steps. Note that if At = 1 and w = 0, then
2WAL & 2sin(w).

Improved algorithms. The above algorithm has the flaw that if At is too large,
so that € and all ays do not all remain small numbers, then the resulting evolution
will be far from the sort of unitary, norm-preserving operation that we would like to
have.

The dynamical system that Margolus originally described did not suffer from this
problem, since his was based on an iteration 2,4, = €™z, that was exact even if w
was large. We would really prefer to have a way of stepping through the Schrodinger
equation that benefited from a similar property.

I have produced other, slightly more sophisticated versions of the above algorithm,
which attempt to do a better job of preserving unitarity, at least, even when At is
large.

Actually T think no algorithm based on discrete spatial simulation will work in
the case where the potential energy function that is imposed on the system leads
to a particle acquiring a momentum that corresponds to a wavelength that is small



364 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

compared to the separation between points. However, as long as the separation
between points is much smaller than the shortest wavelength that ever appears, it
should be possible to construct a simulation that is reasonably accurate even when
fairly large amounts of time are jumped over in a single step.

I could at this point go on and discuss in much more detail all my different
variations of this simulation, and their pros and cons, but at this point it seems to
be a low priority. For now, suffice it to say that I have a 100 percent reversible
technique for simulating the evolution of the Schrodinger wave function in this simple
system, it is accurate as a first order approximation (although I have not here taken
the space to formalize and prove that assertion), and empirical demonstrations (on a
normal computer) verify that the simulation behaves quite well in a variety of simple
test cases involving different initial position distributions, velocities, and potential
energy functions. Phenomena such as tunneling and interference have been observed.
Total probability is nearly conserved. And total reversibility has been experimentally
validated.

For Fredkin and Barton’s update rule, which is essentially the same as ours,
Richard Feynman apparently discovered that there s is a definition of total probabil-
ity that is ezactly conserved by the update rule [63]. In the context of our discussion,
the corresponding definition of the exactly conserved probability over time steps n
would be: P, = /f';f - j”_l . )7n+1. We just recently learned of Feynman’s invariant,
and we have not yet checked our own update rule to make sure that it works.

We now show how to port the above algorithm to a reversible processor. Up-
dating the state need involve only integer addition and multiplication. (Pendulum
does not currently support a built-in multiplication operation, so I had to implement
multiplication as a subroutine, which was easy to write in my high-level language.)

I believe this program, as it stands, constitutes an interesting demonstration of a
significant reversible program in our reversible language, and also demonstrates the
ability of a totally reversible program written in our language to simulate physics
without incurring an asymptotically increasing need for storage.

E.2 Reversible C implementation

I have several different versions of my C program for simulating the Schrodinger
equation. The following version, schii.c, is an exactly-reversible version that uses
only integer arithmetic, and thus was the basis for the version of the program to run
on Pendulum, since we have not created any floating-point support for Pendulum as
of yet.

Large parts of this program are simply concerned with drawing the graphics dis-
play using the X window system, and are therefore uninteresting from the point of



E.2. REVERSIBLE C IMPLEMENTATION 365

view of the simulation technique itself. We have tried to isolate most of the graphics
code into a section at the bottom of the program.

The user interface to the program is currently very minimal. Any key press prints
out current statistics about the wave function. Any mouse button press exits the
program. To change any parameters of the simulation, one must edit the appropriate
constant and recompile the program. Fortunately, the program is short enough so
that this does not take very long.

The key functions in the program are: signed_mult_frac(), which is the integer
multiplication routine for integers taken as representing fractions between -1 and 1,
function(), which computes the appropriate function at a given point that gives the
amount by which a component of the wave vector should be changed at that point,
and step_forwards() and step_back(), which perform a state update in the given
time direction. These functions contain the core functionality which we ported to R
and Pendulum assembly.

/* SCHII: Like SCHI2 except uses only integer multiplication in the main loop.
SCHI2 kept its state in integers but calculating amounts to add
using floating-point math.

This will be the model for my Pendulum implementation.

*/

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#include <string.h>

/* Physical constants. We’ll use MKS (m,kg,s,nt,J,coul...) units. */
#define planck_h (6.626e-34) /* Planck’s constant, in Joule-seconds */
#define light_c (2.998e8) /* Speed of light in meters/second */
static const double
hbar = planck_h/(2*M_PI),/* h/2#pi, also in J-sec */
elec_m = 9.109e-31,/* Electron rest mass, in kg */
elec_q = 1.602e-19,/* Electron charge (abs.value) in Coulombs */
coul_const = 8.988e9; /* 1/4xpi*epsilon_0 (Coulomb’s law constant)
in nt-m~2/coul~2. */

/* Parameters of simulation. o */
#define space_width (le-10) /* Width of sim space in meters: 1 A. */
#define num_pts (128) /* Number of discrete space points in sim. */
static const double
sim_dx = space_width/num_pts, /* delta btw. pts, in meters. */
sim_dt = 5e-22,/* Simulated time per step, in secs. */
init_vel = light_c*0.0,/* Initial velocity in m/s */
initial_mu = -space_width/4,/* initial mean electron pos, rel. to ctr. */
initial_sigma = space_width/20; /* width of initial hump. */

/* For holding some arrays of size num_pts, in real/imaginary pairs. */
static double

*energies,/* Real potential energies at points. */

*on_real,*on_imag,

xoff_real,*off_imag,/* On/off diagonal matrix elements, real/imag */



366 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

*Psi_real,*Psi_imag; /* Real at t, imag at t+1/2. */

/* Now, we will use Psi_real and Psi_imag only for translation between
the internal, integer form, and how it is used externally. Here is
the real wave function: */

static int *psiR,*psil; /* Real and imaginary integer wave function. */
static double scaleFactor; /* The value, in the integer range, that a real
value of 1.0 translates to. */

static int n_steps = 0; /* Number of iterations done so far. */
static double total_t = 0; /* Total simulated time so far. */

static int max_steps = 10000; /* go a million iterations before reversing */
static int direction = 0; /* forwards */

#define STEPS_PER_SHOT 20

typedef enum energ_funcs {
neg_gaus=0, pos_gaus, inv_cutoff, parabolic, const_nonzero, const_zero,
step_barrier

} energ_func_id;

static energ_func_id which_potential = parabolic;

static const char *energ_func_strs[] {
"Negative Gaussian potential well",
"Positive Gaussian potential bump",
"Inverse distance well with cutoff",
"Parabolic well for harmonic oscillator",
"Constant, non-zero energy level",
"Constant, zero energy",

"A step barrier to tunnel through"

};

void print_sim_params() {
printf("\n");
printf ("SCHROEDINGER SIMULATOR PARAMETERS\n");
printf (M==—=m—m e oo \n");
printf("\n");
printf("Width of simulated space is %g meters (/g light-seconds).\n",
space_width, space_width/light_c);
printf("Simulating %d discrete points in space.\n", num_pts);
printf("Distance between points: %g m (%g 1ls).\n",sim_dx,
sim_dx/light_c);
printf("Time per simulation step: %g secs (light dist: %g m)\n",
sim_dt, sim_dtxlight_c);
printf("Initial electron position: mu=Yg m, sigma=jg m.\n",
initial_mu, initial_sigma);
printf("Using potential energy function %d: %s.\n", which_potential,
energ_func_strs[which_potentiall);
printf("Initial electron velocity = %g m/s (%g c).\n",
init_vel, init_vel/light_c);
printf ("Number of steps to go before reversing: J%d.\n",max_steps);
printf("\n");

}

static double *init_real,*init_imag;

void print_stats() {
/* Calculate and print some stats of the wavefunction. */



E.2. REVERSIBLE C IMPLEMENTATION

int this = n_steps&l;
int i;
double total_p = 0;

double mom_real = O, mom_imag = O,

potential = 0,

kin_real = 0, kin_imag = 0,
energ_real = 0, energ_imag = 0;
double dPsi2_real, dPsi2_imag;

double diff=0;

for(i=0;i<num_pts;i++){
int next = (i+1)%num_pts,
prev = (i-1+num_pts)’num_pts;
double real = Psi_reall[il,
imag = Psi_imag[i];
double pd = real*real+imag*imag;

total_p += pd;

dPsi2_real = Psi_real[next] - Psi_reallprev];
dPsi2_imag = Psi_imag[next] - Psi_imag[prev];
mom_real += real*dPsi2_imag - imag*dPsi2_real;
mom_imag -= real*dPsi2_real + imag*dPsi2_imag;

potential += pdxenergies[i];

}

mom_real *= hbar/(2*sim_dx);
mom_imag *= hbar/(2+*sim_dx);

for(i=0;i<num_pts;i++){
double dr = Psi_reall[i] - init_reall[i];
double di = Psi_imag[i] - init_imag[i];
diff += dr*dr + dixdi;

}
diff /= num_pts;

printf("Cycle = %d, t

= %g. Total P = %g.\n",n_steps,total_t,total_p);

printf("  Mean squared diff. from init. state = Jg. (RMS = %g)\n",

diff, sqrt(diff));
printf("  Momentum =
printf("  Velocity =

(%g + i %g) kg m/s.\n",mom_real,mom_imag) ;
(%g + i %g) m/s.\n",

mom_real/elec_m,mom_imag/elec_m);

printf (" =

(%g + i %g) c.\n",

mom_real/(elec_m*light_c),mom_imag/(elec_m*light_c));

printf(" Potential =
}

%g J (%g eV)\n", potential, potential/1.602e-19);

/* Gaussian (normal) distribution, non-normalized. */
double normal(double x,double mu,double sigma)

{

double d = (x-mu)/sigma;

return exp(-0.5*d*d);
}

double *malloc_doubles(){
return (double #*)calloc(num_pts,sizeof(double));

}

int *malloc_ints(){

return (int *)calloc(num_pts,sizeof(int));

}

367



368 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

/* x should now be a real position in space */
double energy(double x){
switch(which_potential)q{
case neg_gaus:
/* Negative Gaussian potential well. */
return - 3e-15 * normal(x,0,space_width/10);
case pos_gaus:
/* Positive Gaussian potential bump. */
return 5e-15 * normal(x,0,space_width/10);
case inv_cutoff:
/* Well where energy drops with inverse distance from center, down
to a cutoff threshold. */

{
double ax = (x<07-x:x%);
double p;
p = - (coul_const*(elec_q*elec_q)/ax);
if (p > -4e-14) {
return p;
} else {
return -4e-14;
}
}

case parabolic:
/* Parabolic well for harmonic oscillator. */
return x*x*le+6;
case const_nonzero:
/* Constant, nonzero energy. Apparent wave rotation rate differs
from zero-energy case.*/
return -24e-15;
case const_zero:
/* Constant, zero energy. */
return 0;
case step_barrier:
/* A step barrier through which to tunnel. */
if (x < space_width * 0.15) {
return 0;
} else if (x < space_width * 0.18) {
return le-15;
} else {
return 0;
}
}
return O;

}

static double epsilon;
static double *alphas;
static int *alphasi;
static int epsiloni;

void cache_energies() {

int 1i;

/* epsilon: an angle that roughly indicates how much of a
point’s amplitude gets spread to its neighboring points per time
step. A function of sim dt and dx parameters only. */

epsilon = hbar*sim_dt/(elec_m*sim_dx*sim_dx);

epsiloni = (int)((unsigned) (0x80000000) * epsilon);

printf("Sim epsilon angle: %g radians (Y%g of a circle).\n",

epsilon, epsilon/(2#M_PI));

printf("Integer epsilon: %d\n",epsiloni);

energies = malloc_doubles();



E.2. REVERSIBLE C IMPLEMENTATION

}

on_real = malloc_doubles();
on_imag = malloc_doubles();
off_real = malloc_doubles();
off_imag = malloc_doubles();
alphas = malloc_doubles();
alphasi = malloc_ints();
printf("Integer alphas:\n");
for(i=0;i<num_pts;i++){

double x = (i - num_pts/2.0)*sim_dx; /* Position in space. */

double alpha;
energies[i] = energy(x);

/* alpha: at this particular point, what’s the absolute phase
angle for on-diagonal. Energy makes a contribution. */

alpha = epsilon + energies[i]#*sim_dt/hbar;
/* A = exp(i*Atheta) */

on_real[i] = cos(epsilon) #* cos(-alpha);
on_imag[i] = cos(epsilon) * sin(-alpha);

/* What’s the phase rotation for off-diag (neighbors). */

off_real[i] = sin(epsilon) * cos(M_PI/2 - alpha);
off_imag[i] = sin(epsilon) * sin(M_PI/2 - alpha);

alphas[i] = alpha;

alphasi[i] = (int) ((unsigned) (0x80000000)*alphas[i]*2);

printf("%d ",alphasi[i]);
}
printf("\n");

void init_wave() {

double *probs = malloc_doubles();
int 1i;
double tprob;
double lambda;
Psi_real = malloc_doubles();
Psi_imag = malloc_doubles();
psiR = malloc_ints();
psil = malloc_ints();
init_real = malloc_doubles();
init_imag = malloc_doubles();
tprob = 0;
for(i=0;i<num_pts;i++){

double x = (i - num_pts/2.0)*sim_dx;

/* Unnormalized initial probability of finding electron here.

double p = normal(x,initial mu,initial_sigma);
probs[i] = p;
tprob += p;
}
for(i=0;i<num_pts;i++){
probs[i] /= tprob;
}

lambda = planck_h/(elec_mxinit_vel);

printf("Initial de Broglie wavelength is %g m (%g 1s).\n",
lambda,lambda/light_c);

for(i=0;i<num_pts;i++){
double x = (i - num_pts/2.0)*sim_dx;
Psi_real[i] = sqrt(probs[i]) * cos(x/lambda*2*M_PI);
Psi_imag[i] = sqrt(probs[i]) * sin(x/lambda*2*M_PI);
}
{
double maxval = 0;
double absval;

rotation

*/

369



370 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

for(i=0;i<num_pts;i++){
absval = Psi_real[i];
absval = (absval<0)7-absval:absval;
if (absval>maxval) maxval=absval;
absval = Psi_imag[i];
absval = (absval<0)?-absval:absval;
if (absvald>maxval) maxval=absval;
}
printf("The maximum absolute value initially is: %g.\n",maxval);
/* We’ll scale our integers so that they can hold values up to
almost twice the largest initial value before they incur
an overflow. */
scaleFactor = (1<<30)/maxval;
printf("Therefore the scale factor will be: %g.\n",scaleFactor);
}
/* Convert to integers. */
printf("Integer psis:\n");
for(i=0;i<num_pts;i++){
psiR[i] = Psi_real[i]*scaleFactor;
psiI[i] = Psi_imag[i]*scaleFactor;
printf("%d+%di ",psiR[i],psiI[il);
}
printf("\n");
/* Convert back to doubles for convenience. */
for(i=0;i<num_pts;i++){
Psi_real[i] = init_real[i] = psiR[i]/scaleFactor;
Psi_imag[i] = init_imag[i] psiI[i]/scaleFactor;
}
T

void sim_init () {
print_sim_params();
cache_energies();
init_wave();
print_stats();

}

int signed_mult_frac(int mi,int m2)
{
int pos,prod=0;
unsigned int mask = 1<<31;
int mip=ml,m2p=m2;
if (m1<0) mip = -mip;
if (m2<0) m2p = -m2p;
for(pos=1;pos<32;pos++){
mask >>= 1;
if (mip&mask)
prod += m2p>>pos;
}
if (m1<0) prod = -prod;
if (m2<0) prod = -prod;
return prod;

}

double function(int *vec,int i){
int j,k;
j = i+1; if (j==-1) j=num_pts-1; else if (j==num_pts) j=0;
k = i-1; if (k==-1) k=num_pts-1; else if (k==num_pts) k=0;
return
signed_mult_frac(alphasil[i],vec[i])
- signed_mult_frac(epsiloni,vec[j])



E.2. REVERSIBLE C IMPLEMENTATION

}

- signed_mult_frac(epsiloni,vec[k]);

void step_forwards() {

}

int i;
for(i=0;i<num_pts;i++)
psiR[i] += (int) (function(psiI,i));
for(i=0;i<num_pts;i++)
psiI[i]l -= (int)(function(psiR,i));
for(i=0;i<num_pts;i++){
Psi_real[i] = psiR[i]/scaleFactor;
Psi_imag[i] = psiI[i]/scaleFactor;
}
n_steps++;
total_t+=sim_dt;

void step_back() {

}

int i;
n_steps--;
for(i=0;i<num_pts;i++)
psiI[i] += (int) (function(psiR,i));
for(i=0;i<num_pts;i++)
psiR[i] -= (int) (function(psiI,i));
for(i=0;i<num_pts;i++){
Psi_real[i] = psiR[i]/scaleFactor;
Psi_imag[i] = psiI[i]/scaleFactor;
}
total_t-=sim_dt;

void sim_step() {

if (direction == 0) {
step_forwards();

} else {
step_back();

}

if (direction == 1 && n_steps == 0) {
printf("\nPresumably back to initial state.\n");
print_stats();
printf("Now turning and going forwards.\n");
direction = 0;

} else if (direction == 0 &% n_steps == max_steps) {
printf("\nCompleted %d steps.\n", max_steps);
print_stats();
direction = 1;
printf("Now turning around and going backwards.\n");

/* Graphics. */

#include <X11/X1lib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include "icon.bitmap"
#define BITMAPDEPTH 1
static Display *display;
static int screen;

371



372 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

static double *prev_real, *prev_imag;

static double maxv;
static double maxp;

void init_graphics() {
int i;
int this = n_steps&l;
prev_real = malloc_doubles();
prev_imag = malloc_doubles();
maxv = 0;
maxp = 0;
for(i=0;i<num_pts;i++){
double absv;
absv = Psi_real[i];
absv = (absv<(0)7-absv:absv;
if (absv > maxv) maxv = absv;
absv = Psi_imag[il;
absv = (absv<Q)7-absv:absv;
if (absv > maxv) maxv = absv;
absv = Psi_real[i]*Psi_reall[i]
+ Psi_imag[i]*Psi_imag[i];
if (absv > maxp) maxp = absv;
}
T

void draw_graphics(win,gc,window_width,window_height,gce,gcreal,gcimag)
Window win;
GC gc;
unsigned window_width, window_height;
GC gce,gcreal,gcimag;

double ght = window_height/2; /* How much Y space per graph */
unsigned cl = ght/2; /* origin y for top graph */

unsigned c¢2 = window_height; /% origin y for bottom graph */
int this = n_steps&l; /* which Psi is current */

int i;

for(i=0;i<num_pts;i++){

unsigned x = i*window_width/num_pts;

double prevReal = prev_reall[il,
previmag = prev_imag[i],
thisReal = Psi_reall[i],
thisImag = Psi_imag[i];

double prevProb = prevReal*prevReal + prevImag*prevImag,
thisProb = thisReal*thisReal + thisImag*thisImag;

int prY = (int) ((prevReal/maxv)*ght*0.5);

int piY = (int) ((prevImag/maxv)*ght*0.5);
int ppY = (int) ((prevProb/maxp)*ght);
int trY = (int) ((thisReal/maxv)*ght*0.5);
int tiY = (int) ((thisImag/maxv)*ght*0.5);
int tpY = (int) ((thisProb/maxp)*ght);

/* Similar to above calculation, but for point next to us on the right.*/
unsigned j = (i+1)%num_pts;
unsigned xj = (i+1)*window_width/num_pts;
double RprevReal = prev_reall[j]l,
RprevImag = prev_imag[j],
RthisReal = Psi_reallj],
RthisImag = Psi_imag[j];
double RprevProb = RprevReal*RprevReal + RprevImag*RprevImag,



E.2. REVERSIBLE C IMPLEMENTATION 373

RthisProb = RthisReal*RthisReal + RthisImag*RthisImag;
int RprY = (int) ((RprevReal/maxv)*ght*0.5);

int RpiY = (int) ((RprevImag/maxv)*ght*0.5);
int RppY = (int) ((RprevProb/maxp)*ght) ;
int RtrY = (int) ((RthisReal/maxv)*ght*0.5);
int RtiY = (int) ((RthisImag/maxv)*ght*0.5);
int RtpY = (int) ((RthisProb/maxp)*ght) ;

/* Erase old Psi at this pos. */
XDrawLine(display,win,gce,x,cl-prY,xj,c1-RprY);
XDrawLine(display,win,gce,x,cl-piY,xj,c1-RpiY¥);
/* Draw new Psi. */
XDrawLine(display,win,gcreal,x,cl-trY,xj,cl-RtrY);
XDrawLine(display,win,gcimag,x,c1-tiY¥,xj,c1-RtiY);
/* Erase old prob and draw new. */
XDrawLine(display,win,gce,x,c2-ppY,xj,c2-RppY);
XDrawLine(display,win,gc,x,c2-tpY,xj,c2-RtpY);
/* Draw energy function. */
XDrawPoint (display,win,gc,x, (int) (c2-(ght*0.5)-ght*energies[i]*1e14));
}
for(i=0;i<num_pts;i++){
prev_real[i] = Psi_reallil;
prev_imag[i] = Psi_imag[i];
}
XFlush(display);

/* Pretty much everything below here is uninteresting X interfacing
stuff. */

get_GC(Window win, GC *gc, XFontStruct *font_info, int foo) {
unsigned long valuemask = 0; /* ignore XGCvalues and use defaults */
XGCValues values;
unsigned int line_width = 1;
int line_style = LineSolid;
int cap_style = CapButt;
int join_style = JoinRound;
int dash_offset = 0;
static char dash_list[] = {
12, 24 };
int list_length = 2;

/* Create default graphics context */
*gc = XCreateGC(display,win,valuemask,&values);

/* specify font */
XSetFont(display,*gc,font_info->fid);

{
XColor sdr,edr;

if (foo == 1) {
XSetForeground(display, *gc,WhitePixel(display,screen));

} else if (foo == 0) {
XSetForeground(display, *gc,BlackPixel(display,screen));

} else if (foo == 2) {
XAllocNamedColor(display,DefaultColormap(display,screen),"cyan",

&sdr,&edr) ;

XSetForeground(display, *gc,edr.pixel);

} else if (foo == 3) {
XAllocNamedColor(display,DefaultColormap(display,screen),"yellow",



374 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

&sdr,&edr) ;
XSetForeground(display, *gc,edr.pixel);
1}

/* set line attributes */
XSetLineAttributes(display,*gc,line_width,line_style,cap_style,
join_style);

/* set dashes to be line_width in length */
XSetDashes(display, *gc,dash_offset,dash_list,list_length);
T

load_font (XFontStruct **font_info) {
char *fontname = "9x15";

/* Access font */
if ((*font_info = XLoadQueryFont(display,fontname)) == NULL) {
fprintf(stderr,"Basic: Cannot open 9x15 font\n");
exit(-1);
}
¥

int main(argc,argv)
int argc;
char **argv;

Window win;

unsigned width, height; /* window size */

int x = 0, y = 0; /* window position */

unsigned border_width = 4; /* border four pixels wide */
unsigned display_width, display_height;

char *window_name = "Schroedinger Wave Simulator";
char *icon_name = "schroed";

Pixmap icon_pixmap;

XSizeHints size_hints;

XEvent report;

GC gc,gce,gecreal,gcimag;

XFontStruct *font_info;

char *display_name = NULL;

int 1i;

/* connect to X server */

if ( (display=XOpenDisplay(display_name)) == NULL ) {
fprintf(stderr,
"cannot connect to X server %s\n",
XDisplayName(display_name));
exit(-1);

}

sim_init();
init_graphics();

/* get screen size from display structure macro */
screen = DefaultScreen(display);

display_width = DisplayWidth(display,screen);
display_height = DisplayHeight(display,screen);

/* size window with enough room for text */
width = display_width/3, height = display_height/3;



E.2. REVERSIBLE C IMPLEMENTATION

/* create opaque window */

win = XCreateSimpleWindow(display,RootWindow(display,screen),

X,y,width,height,border_width,
WhitePixel(display,screen),
BlackPixel(display,screen));

/* Create pixmap of depth 1 (bitmap) for icon */
icon_pixmap = XCreateBitmapFromData(display, win, icon_bitmap_bits,

icon_bitmap_width,
icon_bitmap_height);

/* initialize size hint property for window manager */
size_hints.flags = PPosition | PSize | PMinSize;

size_hints.x = x;
size_hints.y = y;
size_hints.width = width;
size_hints.height = height;
size_hints.min_width = 175;
size_hints.min_height = 125;

/* set properties for window manager (always before mapping) */
XSetStandardProperties(display,win,window_name,icon_name,

icon_pixmap,argv,argc,&size_hints);

/* Select event types wanted */

XSelectInput(display,win, ExposureMask | KeyPressMask |
ButtonPressMask | StructureNotifyMask);

load_font(&font_info);

/* create GC for text and drawing */
get_GC(win, &gc, font_info, 1);
get_GC(win, &gce, font_info, 0);
get_GC(win, &gcreal, font_info, 2);
get_GC(win, &gcimag, font_info, 3);

/* Display window */
XMapWindow(display,win) ;

while (1) { /* Event loop. */
int i;
XNextEvent (display,&report);
switch(report.type) {
case Expose:

/* get rid of all other Expose events on the queue */
while (XCheckTypedEvent(display, Expose, &report));
draw_graphics(win, gc, width, height, gce, gcreal, gcimag);

for(i=0; i<STEPS_PER_SHOT;i++)
sim_step();
/*print_stats();
sleep(1);*/
XClearArea(display,win,0,0,1,1,1);
break;
case ConfigureNotify:
width = report.xconfigure.width;
height = report.xconfigure.height;

XClearArea(display,win,0,0,width,height,1);

break;

case KeyPress:
print_stats();
break;

375



376 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

case ButtonPress:
XUnloadFont(display,font_info->fid);
XFreeGC(display,gc);
XFreeGC(display,gce);
XFreeGC(display,gcreal);
XFreeGC(display,gcimag);
XCloseDisplay(display);
exit(1);
default:
break;
}
}
return 0;

}

E.3 Source code in R language

The following is the complete source code for the Schrodinger simulation as ported
into the R programming language, except for the multiplication routine, which the
compiler provides as a standard library function. See the def-smf construct in §D.4.16
(p. 348) for the R source for the multiplication subroutine.

Note that the initial wavefunction state is provided in the form of a static data
array, so that we do not have to port the trigonometric functions that were used to
generate the initial state in the C version of the program. Also note that we did not
bother to port the graphics code. Output is instead provided in a raw form which is
parsed, displayed, and compared with the original C program’s output by a separate
program which is wrapped around the Pendulum simulator.

;33 Schroedinger Wave Equation simulation program.
;55 The first major test of R (the reversible language)!

;35 Current status: More compiler work needed. 6/12/97.

;33 Currently all data must come before the code that uses it, so that the
;3; compiler will recognize these identifiers as names of static data items
;33 rather than as dynamic variables.

;; epsilon = hbar*dt/m*dx"2. DX=7.8125e-13m, DT=be-22s

(defword epsilon 203667001) ; 0.0948398 radians.

;3 Parabolic potential well with 128 points.

(defarray alphas
458243442 456664951 455111319 453582544 452078627 450599569 449145369
447716027 446311542 444931917 443577149 442247239 440942188 439661994
438406659 437176182 435970563 434789802 433633899 432502854 431396668
430315339 429258869 428227257 427220503 426238607 425281569 424349389
423442068 422559605 421701999 420869252 420061363 419278332 418520159



E.3. SOURCE CODE IN R LANGUAGE

417786845
413349669
410130542
408129463
407346432
407781450
409434515
412305628
416394790
421701999
428227257
435970563
444931917
455111319

;3 This is the shape of the initial wavefunction; amplitude doesn’t matter.

417078388
412815220
409770099
407943027
407334003
407943027
409770099
412815220
417078388
422559605
429258869
437176182
446311542
456664951)

;5 Real part.

(defarray psiR 2072809 3044772 4418237 6333469 8968770 12546502 17338479
23669980 31921503 42527251 55969298 72766411 93456735 118573819 148615999

416394790
412305628
409434515
407781450
407346432
408129463
410130542
413349669
417786845
423442068
430315339
438406659
447716027

415736049
411820895
409123788
407644730
407383720
408340757
410515843
413908977
418520159
424349389
431396668
439661994
449145369

415102167
411361019
408837920
407532868
407445865
408576909
410926002
414493143
419278332
425281569
432502854
440942188
450599569

414493143
410926002
408576909
407445865
407532868
408837920
411361019
415102167
420061363
426238607
433633899
442247239
452078627

413908977
410515843
408340757
407383720
407644730
409123788
411820895
415736049
420869252
427220503
434789802
443577149
453582544

184009768 225068513 271948808 324607187 382760978 445857149 513053161
583213481 654924586 726530060 796185813 861933650 921789572 973841548
1016350163 1047844835 1067208183 1073741824 1067208183 1047844835

1016350163 973841548 921789572 861933650 796185813 726530060 654924586

583213481 513053161 445857149 382760978 324607187 271948808 225068513
184009768 148615999 118573819 93456735 72766411 55969298 42527251
31921503 23669980 17338479 12546502 8968770 6333469 4418237 3044772
2072809 1393998 926112 607804 394060 252382 159681 99804 61622 37586

22647 13480 7926 4604 2642 1497 838 463 2563 136 73 38 20 105210000

000000000000000000000000000000000)

(defarray psiI 000000000000000000000000000000
0000000000000
0000000000000

;s Imaginary part.
0000000000
0000000000
0000000000

;5 This subroutine updates one of the

o O o
o O o
o O o
(ool e]
o O o
o O o
o O O
o O O
o O o
o O o
o O O
o O O
o O o

(defsub halfstep (dest src)
(let (e <- epsilon)

(for i =

0 to 127

(let (d <-> (dest _ 1i))

(d += ((alphas
(d -= (e */ (src _ ((i + 1)
(d-= (e ¥/ (src _ ((i - 1)

;5 Print the current wave to the output

(defsub printwave (wave)
(for i = 0 to 127
(printword (wave _ i)))

(println))

i) */ (src

0
0
0

- 1N
& 127))))
& 127))))))))

stream.

;3 Main program, goes by the name of SCHROED.
(defmain schroed
(for i = 1 to 1000 ;Enough time for electron to fall to well bottom.
;; Take turns updating the two components of the wave.
(call halfstep psiR psil)
(rcall halfstep psil psiR)
;3 Print both wave components.
(call printwave psiR)
(call printwave psiI)))

two waves, using the other.

377



378 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

E.4 Compiled PISA code

The following is the exact PISA assembly code output that was produced from the
above input file by the R compiler RcoMmp we listed in ch. D. It consists of 830
machine words (395 of data, 435 of program). We will not review this code in detail
here. However, when it was executed under our Pendulum virtual machine PENDVM
(a C program written by Matt DeBergalis), it was found to produce exactly identical
output, on every step, to that of the original C version of the program, listed earlier,
thus validating the correctness of RcomMpP and PENDVM (at least for this program).
And when execution was stopped and reversed at any point, the processor state re-
turned exactly to the orignal state at the start of the program (validating PENDVM’s
guarantee of reversibility).

;3 pendulum pal file

_PRESKIP395: BRA _POSTSKIP396
EPSILON: DATA 203667001
_POSTSKIP396: BRA _PRESKIP395
_PRESKIP397: BRA _POSTSKIP398
ALPHAS: DATA 458243442

DATA 456664951
DATA 455111319

(122 intervening data statements elided)

DATA 453582544
DATA 455111319
DATA 456664951
_POSTSKIP398: BRA _PRESKIP397
_PRESKIP399: BRA _POSTSKIP400
PSIR: DATA 2072809
DATA 3044772
DATA 4418237

(122 intervening data statements elided)

DATA 0

DATA O

DATA 0
_POSTSKIP400: BRA _PRESKIP399
_PRESKIP401: BRA _POSTSKIP402
PSII: DATA 0O

DATA O

DATA O

(122 intervening data statements elided)

DATA 0O

DATA 0

DATA O
_POSTSKIP402: BRA _PRESKIP401
_SUBTOP403: BRA _SUBB0OT404



E.4. COMPILED PISA CODE

HALFSTEP:

_FORTOP407:

SWAPBR $2
NEG $2

ADDI $1 -1
EXCH $31 $1
ADDI $1 1
ADDI $31 EPSILON
ADDI $1 -2
EXCH $30 $1
ADDI $1 2
EXCH $30 $31
ADDI $1 -3
EXCH $29 $1
ADDI $1 3
ADD $29 $30
EXCH $30 $31
ADDI $31 -EPSILON
ADDI $30 128
ADDI $1 -4
EXCH $28 $1
ADDI $1 4
ADD $31 $28
BNE $31 $28 _FORBOT408
ADDI $1 -5
EXCH $27 $1
ADDI $1 5
ADD $3 $31
EXCH $27 $3
SUB $3 $31
ADDI $1 -6
EXCH $26 $1
ADDI $1 6
ADDI $26 ALPHAS
ADD $26 $31
ADDI $1 -7
EXCH $25 $1
ADDI $1 7
ADDI $1 -8
EXCH $24 $1
ADDI $1 8
EXCH $24 $26
ADD $25 $24
EXCH $24 $26
SUB $26 $31
ADDI $26 -ALPHAS
ADD $24 $4
ADD $24 $31
ADDI $1 -9
EXCH $23 $1
ADDI $1 9
EXCH $23 $24
ADD $26 $23
EXCH $23 $24
SUB $24 $31
SUB $24 $4
XOR $23 $5
XO0R $5 $23
XOR $26 $4
XO0R $4 $26
XO0R $26 $4
XOR $25 $3
XO0R $3 $25

379



380 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

XO0R $25 $3
XOR $24 $2
XO0R $2 $24
ADDI $1 -9
BRA SMF
ADDI $1 9
ADD $27 $5
ADDI $1 -9
RBRA SMF
ADDI $1 9
ADD $2 $26
ADD $2 $31
ADDI $1 -10
EXCH $22 $1
ADDI $1 10
EXCH $22 $2
SUB $4 $22
EXCH $22 $2
SUB $2 $31
SUB $2 $26
ADDI $2 ALPHAS
ADD $2 $31
EXCH $4 $2
SUB $3 $4
EXCH $4 $2
SUB $2 $31
ADDI $2 -ALPHAS
ADD $2 $31
ADDI $2 1
ADDI $3 127
ANDX $4 $2 $3
ADDI $3 -127
ADD $3 $26
ADD $3 $4
EXCH $22 $3
ADD $5 $22
EXCH $22 $3
SUB $3 $4
SUB $3 $26
XO0R $3 $5
XO0R $5 $3
XO0R $3 $4
XO0R $4 $3
XO0R $3 $4
XO0R $29 $3
XOR $3 $29
XO0R $29 $3
XO0R $22 $2
XO0R $2 $22
ADDI $1 -10
BRA SMF
ADDI $1 10
SUB $27 $5
ADDI $1 -10
RBRA SMF
ADDI $1 10
ADD $2 $26
ADD $2 $29
ADDI $1 -11
EXCH $21 $1
ADDI $1 11



E.4. COMPILED PISA CODE 381

EXCH $21 $2
SUB $4 $21
EXCH $21 $2
SUB $2 $29
SUB $2 $26
ADDI $2 127
ANDX $29 $22 $2
ADDI $2 -127
ADDI $22 -1
SUB $22 $31
ADD $2 $31
ADDI $2 -1
ADDI $4 127
ANDX $5 $2 $4
ADDI $4 -127
ADD $4 $26
ADD $4 $5
EXCH $22 $4
ADD $21 $22
EXCH $22 $4
SUB $4 $5
SUB $4 $26
XO0R $4 $5
XO0R $5 $4
XO0R $21 $4
XO0R $4 $21
XO0R $21 $4
XO0R $22 $2
XO0R $2 $22
ADDI $1 -11
BRA SMF

ADDI $1 11
SUB $27 $5
ADDI $1 -11
RBRA SMF
ADDI $1 11
ADD $2 $26
ADD $2 $21
EXCH $29 $2
SUB $4 $29
EXCH $29 $2
SUB $2 $21
SUB $2 $26
ADDI $2 127
ANDX $21 $22 $2
ADDI $2 -127
ADDI $22 1
SUB $22 $31
ADD $25 $31
EXCH $27 $25
SUB $25 $31
ADDI $31 1
ADDI $1 -11
EXCH $21 $1
ADDI $1 11
XO0R $29 $3
XO0R $3 $29
ADDI $1 -10
EXCH $22 $1
ADDI $1 10
XO0R $2 $24



382

_FORBOT408:

_SUBBOT404:
_SUBTOP444:
PRINTWAVE:

_FORTOP446:

APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

XO0R $24 $2
XOR $3 $25
XO0R $25 $3
XO0R $4 $26
XOR $26 $4
XOR $5 $23
XOR $23 $5
ADDI $1 -9
EXCH $23 $1
ADDI $1 9
ADDI $1 -8
EXCH $24 $1
ADDI $1 8
ADDI $1 -7
EXCH $25 $1
ADDI $1 7
ADDI $1 -6
EXCH $26 $1
ADDI $1 6
ADDI $1 -5
EXCH $27 $1
ADDI $1 5

BNE $31 $30 _FORTOP407
SUB $31 $30
ADDI $30 -128
ADDI $28 EPSILON
EXCH $30 $28
SUB $29 $30
EXCH $30 $28
ADDI $28 -EPSILON
ADDI $1 -4
EXCH $28 $1
ADDI $1 4
ADDI $1 -3
EXCH $29 $1
ADDI $1 3
ADDI $1 -2
EXCH $30 $1
ADDI $1 2
ADDI $1 -1
EXCH $31 $1
ADDI $1 1

BRA _SUBTOP403
BRA _SUBB0OT445
SWAPBR $2

NEG $2

ADDI $1 -1
EXCH $31 $1
ADDI $1 1
ADDI $31 128
ADDI $1 -2
EXCH $30 $1
ADDI $1 2
ADDI $1 -3
EXCH $29 $1
ADDI $1 3

ADD $30 $29
BNE $30 $29 _FORBOT447
ADDI $1 -4
EXCH $28 $1
ADDI $1 4



E.4. COMPILED PISA CODE

_FORBOT447:

_SUBB(OT445:
_SUBTOP457:
SMF:

QUTPUT $28
ADD $28 $3
ADD $28 $30
ADDI $1 -5
EXCH $27 $1
ADDI $1 5
ADDI $1 -6
EXCH $26 $1
ADDI $1 6
EXCH $26 $28
ADD $27 $26
EXCH $26 $28
SUB $28 $30
SUB $28 $3
QUTPUT $27
ADD $26 $3
ADD $26 $30
EXCH $28 $26
SUB $27 $28
EXCH $28 $26
SUB $26 $30
SUB $26 $3
ADDI $30 1
ADDI $1 -6
EXCH $26 $1
ADDI $1 6
ADDI $1 -5
EXCH $27 $1
ADDI $1 5
ADDI $1 -4
EXCH $28 $1
ADDI $1 4
BNE $30 $31 _FORTOP446
SUB $30 $31
ADDI $31 -128
ADDI $29 1
QUTPUT $29
ADDI $29 -1
ADDI $1 -3
EXCH $29 $1
ADDI $1 3
ADDI $1 -2
EXCH $30 $1
ADDI $1 2
ADDI $1 -1
EXCH $31 $1
ADDI $1 1
BRA _SUBTOP444
BRA _SUBBOT458
SWAPBR $2
NEG $2

ADDI $1 -1
EXCH $31 $1
ADDI $1 1
ADDI $1 -2
EXCH $30 $1
ADDI $1 2
ADDI $1 -3
EXCH $29 $1
ADDI $1 3
ADDI $1 -4

383



384 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

EXCH $28 $1

ADDI $1 4

ADDI $1 -5

EXCH $27 $1

ADDI $1 5

ADDI $1 -6

EXCH $26 $1

ADDI $1 6

ADDI $29 1

ADD $31 $3
_IFTOP459: BGEZ $3 _IFBOT460

NEG $31
_IFBOT460: BGEZ $3 _IFTOP459

ADD $30 $4
_IFTOP461: BGEZ $4 _IFBOT462

NEG $30
_IFBOT462: BGEZ $4 _IFTOP461

RL $29 31

ADDI $1 -7

EXCH $25 $1

ADDI $1 7

ADDI $25 1

ADDI $1 -8

EXCH $24 $1

ADDI $1 8

ADDI $24 32

ADDI $1 -9

EXCH $23 $1

ADDI $1 9

ADD $23 $25
_FORTOP463: BNE $23 $25 _FORBOT464

RR $29 1

ANDX $27 $31 $29
_IFTOP467: BEQ $27 $0 _IFBOT468

SRLVX $28 $30 $23

ADD $26 $28

SRLVX $28 $30 $23
_IFBOT468: BEQ $27 $0 _IFTOP467

ANDX $27 $31 $29

ADDI $23 1
_FORBOT464: BNE $23 $24 _FORTOP463

SUB $23 $24

ADDI $24 -32

ADDI $25 -1
_IFTOP469: BGEZ $3 _IFBOT470

NEG $26
_IFBOT470: BGEZ $3 _IFTOP469
_IFTOP471: BGEZ $4 _IFBOT472

NEG $26
_IFBOT472: BGEZ $4 _IFTOP471

ADD $5 $26
_IFTOP473: BGEZ $4 _IFBOT474

NEG $30
_IFBOT474: BGEZ $4 _IFTOP473

SUB $30 $4
_IFTOP475: BGEZ $3 _IFBOT476

NEG $31
_IFBOT476: BGEZ $3 _IFTOP475

SUB $31 $3

ADDI $29 -1

ADDI $1 -9



E.4. COMPILED PISA CODE

_SUBBOT458:
_MAINTOP:

SCHROED:

_FORTOP477:

EXCH $23 $1
ADDI $1 9
ADDI $1 -8
EXCH $24 $1
ADDI $1 8
ADDI $1 -7
EXCH $25 $1
ADDI $1 7
ADDI $1 -6
EXCH $26 $1
ADDI $1 6
ADDI $1 -5
EXCH $27 $1
ADDI $1 5
ADDI $1 -4
EXCH $28 $1
ADDI $1 4
ADDI $1 -3
EXCH $29 $1
ADDI $1 3
ADDI $1 -2
EXCH $30 $1
ADDI $1 2
ADDI $1 -1
EXCH $31 $1
ADDI $1 1
BRA _SUBTOP457
BRA _MAINBOT
.START SCHROED
START

ADDI $2 1
ADDI $3 1001
ADD $4 $2

BNE $4 $2 _FORBOT478

XO0R $5 $4

XO0R $4 $5
ADDI $4 PSII
XO0R $6 $3

XO0R $3 $6
ADDI $3 PSIR
XO0R $7 $2

XO0R $2 $7

BRA HALFSTEP
ADDI $3 -PSIR
ADDI $4 -PSII
ADDI $4 PSIR
ADDI $3 PSII
RBRA HALFSTEP
ADDI $3 -PSII
ADDI $4 -PSIR
ADDI $3 PSIR
BRA PRINTWAVE
ADDI $3 -PSIR
ADDI $3 PSII
BRA PRINTWAVE
ADDI $3 -PSII
ADDI $5 1

XO0R $2 $7

XO0R $7 $2

XO0R $3 $6

XO0R $6 $3

385



386 APPENDIX E. REVERSIBLE SCHRODINGER WAVE SIMULATION

XO0R $4 $5

XO0R $5 $4
_FORBOT478: BNE $4 $3 _FORTOP477

SUB $4 $3

ADDI $3 -1001

ADDI $2 -1

FINISH
_MAINBOT: BRA _MAINTOP



