47

Chapter 3

Reversible computing theory

In the previous chapter, we set the stage for our research by reviewing the known
physical limits on computation, including the entropic cost of logically irreversible
information loss. We saw that avoiding this cost requires the use of computational
primitives that possess the special property of logical reversibility. This observation
leads naturally to the question: What implications would logical reversibility have in
the context of the traditional theory of computation?

This chapter addresses that question, while also introducing the related question
of how the traditional measures of complexity and models of computation will need to
be adjusted to more effectively cope with thermodynamic issues and other important
physical considerations. That line of study is continued in chapters 4 and 5.

One reason that computer designers have not yet rushed to adopt reversible com-
puting principles is that purely reversible operation is not necessarily optimal in all
circumstances. For many applications of computer technology today and in the fu-
ture, energy dissipation may not be a limiting factor. In such circumstances, purely
reversible operation appears to incur significant computational overheads compared
to irreversible operation. If energy dissipation is modeled as costing exactly noth-
ing, then it seems that the total cost overhead factor for pure reversible computing
becomes unboundedly large as problem sizes increase.

In §3.4 of this chapter, we will rigorously prove a technical theorem in computa-
tional complexity theory which suggests that such overheads are inevitable, and that
no amount of clever improvements of reversible algorithms can avoid these overheads
on all problems. This result indicates that if we wish to be able to perform asymp-
totically optimally even under cost models in which the energy cost is zero, then our
computer models should at least include the option of not being completely reversible.

However, in chapter 5, we will show that if energy dissipation has any non-zero
cost, then our physical model of computation must also include the option to have an
arbitrarily high degree of reversibility, if it is to achieve asymptotically optimal speed

48 CHAPTER 3. REVERSIBLE COMPUTING THEORY

and cost-efficiency on all problems.

But first, in §3.1 and §3.2, we will review general concepts of models of computa-
tion, computability, and complexity, and introduce a few new measures of complexity
that attempt to better capture important physical considerations. Then in §3.3 we re-
view the major results of existing reversible computing theory, leading up to our own
contributions in §3.4. Finally, §3.5 sums up the comparison of traditional reversible
and irreversible computing models.

3.1 Models of computation

Discussions of the theory of computation often start with the definition of a par-
ticular model of computation to work with, such as, for example, Turing machines.
However, in this thesis, we do not wish to pick a particular model, since our interest
is in comparing the relative efficiency of different models. If we wished to pursue a
completely formal mathematical approach, we would need to give a precise definition
of what a model of computation s in general, describe various particular models in
terms of that general framework, define what it means to compare two models under
that framework, and then prove various theorems comparing the different models.
This would be straightforward but tedious, and it is unclear whether we would learn
anything important from that highly formal approach that is not already sufficiently
clear using our more informal understanding of the situation.

Therefore, in this thesis we will refrain from presenting a detailed formal expli-
cation of the concept of a “model of computation,” and instead we will rest our dis-
cussion on the intuitive understanding of the phrase that the reader will be expected
to have, given a general background in computer science. To refresh the reader’s
memory, a partial list of existing models of computation may be helpful (table 3.1).

Informally speaking, a model of computation merely delineates a space of ab-
stract computing machines, and the computations that run on them. Most models
were originally introduced as an attempt to approximate some class of physical ma-
chines; however, the existing models unusually end up ignoring one or another of the
important realities of physical law that we saw in chapter 2. Sections 4.2 and 4.3
of ch. 4 review some of the problems with the existing models, and discusses candi-
dates for a new model (which we might call PM, the “physical machine”) intended
to exactly represent the computing capabilities of physics.

Physically realistic or not, any abstract model of computation needs to be reduced
to a physical implementation in order to actually run. In chapter 5 we will compare the
power of two fairly realistic classes of models of physically-implemented machines: the
FIA (fully irreversible architectures) and the TPRA (time-proportionally reversible
architectures), and we show that the TPRAs are strictly more efficient, in several

3.1. MODELS OF COMPUTATION 49
Notation | Model name Example references
PRF Primitive recursive functions Rogers 1987 [116], §1.2, pp. 59
RF Recursive functions [116], ch. 1
FA Finite automata Hopcroft & Ullman 1979 [71],
ch. 2
RFA | Reversible finite automata Pin 1987 [111]
™ Turing machines [143]; [71], ch. 7
RTM | Reversible Turing machines [81, 16, 80]
NTM | Nondeterministic Turing machines | [71], §7.5
CA Cellular automata von Neumann 1966 [154],
Toffoli & Margolus 1987 [138]
BBM | Billiard-ball model Fredkin [62]
RAM | Random access machines Papadimitriou 1994 [108], §2.6
PRAM | Parallel random access machines Papadimitriou 1994 [108], §15.2,
pp- 371-375
BLC | Boolean logic circuit Papadimitriou 1994 [108], §4.3
3dM | 3-d mesh Leighton 1992 [83], ch. 1

Table 3.1: Some existing theoretical models of computation.

50 CHAPTER 3. REVERSIBLE COMPUTING THEORY

physically-relevant senses.

3.1.1 Computability

For any model of computation, an obvious first question is “What computations can
it possibly perform?” (Given unlimited resources.) This question was the subject
of much early research on computation, but eventually it was realized that a large
variety of physically reasonable models of computation can all compute exactly the
same set of functions, namely the recursive (now just called computable) functions
(cf. [116]), and so the issue became less interesting. The famous “Church’s thesis” is
the conjecture that the recursive functions are indeed exactly the functions that real
physically-realizable machines can compute; the conjecture is true as far as anyone
knows, and it would be extremely surprising if physical machines were to turn out to
be able to compute non-recursive functions.

Of course, there also exist weaker models of computation that cannot even com-
pute all recursive functions, such as finite automaton (FA) models.

With computability turning out to be mostly a non-issue, the next natural issue in
computing theory is to discover how difficult or complex one finds various computa-
tional tasks to be under a given model of computation, or (in complementary terms),
how efficiently the model can perform on various tasks.

3.2 Computational complexity and efficiency

Now we review some of the basic concepts used in traditional computational com-
plexity theory, and extend them to capture some new, more general measures of com-
putational complexity and cost-efficiency that will help us better address real-world
concerns in later sections.

3.2.1 Computational efficiency vs. computational complexity

The focus of this thesis is on how to achieve maximum computational efficiency,
which can mean several things, but most often we will use it to mean cost efficiency,
defined as follows.

Given some way ¥ of characterizing the cost of a computation (or any process),
one very general notion of efficiency is the fraction of the cost that is actually well-
spent. In other words, if the minimum possible cost to perform some task i $min,
and the actual costs incurred by a particular computation that performs that task
are $, then we can say that the cost-efficiency %g of the computation (under the cost

3.2.2. CHARACTERIZING COMPUTATIONAL COMPLEXITY ol

measure ¥) is

(3.1)

because only $,.;, out of the total cost $ was really warranted; the remainder $— $,,;,
was wasted.

Thus, whatever the minimum cost $unin for a task, in order to maximize the effi-
ciency %g, one should try to minimize the actual cost $. This leads to the frequent
emphasis in computer science on characterizing and studying various abstract mea-
sures of cost, which are often referred to in theoretical computer science as measures
of computational complexity.

3.2.2 Characterizing computational complexity

In this section we examine how measures of computational complexity are tradition-
ally characterized, and propose the use of some new complexity measures that may
allow different computational models to be compared in a more realistic way.

3.2.2.1 Scaling with problem size

When comparing the cost-efficiency of two algorithms or two models of computation,
it is sometimes difficult to make a definitive distinction as to which candidate is better,
if one of them is more efficient on some problems, and the other one is more efficient
at others. Even within a particular class of problems, one machine may be better at
small problems and the other at large ones.

However, if we look at how the performance of the two machines scales as the
problem size increases, it may often be the case that one machine performs better
than the other at problems of all sizes above a certain size, and the ratio between
the efficiency of the two machines may even grow unboundedly large as problem sizes
increase. Asymptotic order-of-growth analysis (see table F.4, p. 389) is the traditional
tool for determining if such relationships hold, because it allows ignoring the many
details of algorithm design that cause constant-factor differences in complexity, which
often end up being irrelevant in an asymptotic determination of which machine is
better.

Table 3.2.2.1 lists several measures of complexity which we will now discuss.

3.2.2.2 Traditional measures of complexity

Traditionally in computer science, theoreticians study only very simple measures of
complexity, in order to make their analysis easier. Two of the most popular measures

52 CHAPTER 3. REVERSIBLE COMPUTING THEORY

Our Notation for
the Cost Measure | Meaning
Computational cost measures.
Nops Number of primitive operations.
T Number of computational clock “ticks”
(called “time” in traditional complexity theory).
S Maximum memory used at any time
(called “space” in traditional complexity theory).
(S,T) Computational “space” paired with “time” (p. 54).
ST Computational “space” times “time” (p. 54).
Physical cost measures.
Tphys Physical time taken.
Vmax Maximum physical volume of space used.
Stot Total entropy generated.
$e Comprehensive physical cost complexity (p. 55).
s Simplified physical cost complexity (p. 55).

Table 3.2: Some measures of cost or complexity. We distinguish the non-physical,
“computational” cost measures from the physical cost measures. The physical mea-
sures can be accurately determined only for models of computation that realistically
take into account physical constraints on computation such as we discussed in chap-
ter 2.

3.2.2. CHARACTERIZING COMPUTATIONAL COMPLEXITY 93

are time complexity and space complexity.

Time complexity. The “time complexity” of a computation can be characterized
simply as the amount of physical time ¢,y that the computation takes (from its start
to its end), or as the number N,y of computational “operations” (at whatever level
of interest) that are performed, which is proportionally equivalent to real time if, for
example, operations are performed serially and take ©(1) (i.e., constant) time each.
If operations are performed in parallel, a better approximation to time would be the
number of “ticks” T of some (real or imagined) computational “clock” that is thought
of as synchronizing the operations of all the processing elements.

The problem with using time complexity alone as a cost measure is that it ignores
the cost of the computer that is needed to solve a problem with the minimum time
complexity. The minimum time complexity might only be achieved by a computer
that is unfeasibly expensive.

One may reply that the machine cost is negligible because it may be amortized
over arbitrarily many uses of the machine into the future, but one can counter with
the point that whenever the computer is fully occupied with solving the given prob-
lem, its components can not meanwhile be used for another problem, so there is an
opportunity cost inherent in using a large machine that must be considered as well.

Thus, minimizing only time complexity may completely miss the solution that
minimizes cost in the real world.

Space complexity. Another measure of computational complexity which attempts
to take the machine cost into account is space complexity, that is, the maximum
amount of digital storage (in bits, say) that is in use at any point during the compu-
tation (we will denote this as S).

Given fixed lower bounds to the physical size and mass-energy required for a bit’s
worth of storage, space complexity can also be equated (within a constant factor) to
the amount of physical volume (Vy,ax) or mass in the computer, assuming there are
no cost advantages in storing bits with an asymptotically increasing mass-per-bit or
volume-per-bit. We conjecture that asymptotically, this assumption is true.

Of course, like time complexity, space complexity by itself is also inaccurate for
real-world situations. Most significantly, it ignores the impact of the length of time
during which the given amount of storage needs to be used. If the storage requirements
for a computation are large, but the computation is rather short, or even if just the
time during which the bulk of the storage is in use is short, then the computation may
actually be less costly, in real terms, than a computation that has a smaller formal
space complexity but which occupies that space for an extremely long time.

o4 CHAPTER 3. REVERSIBLE COMPUTING THEORY

3.2.2.3 Some new measures of complexity

Given the inadequacies of the most popular traditional measures of complexity, we
now describe some new alternative measures which attempt to more closely approxi-
mate the real-world economics of computing.

Joint space-time complexity. We saw earlier that both space complexity and
time complexity, although they each took important cost factors into account, were
individually incomplete. We can try to improve on the situation by combining both
space and time complexity into a single measure of complexity.

One way to combine a space complexity measure s and a time complexity measure
t is to simply group them into a pair (s,t). We can define a partial order = between
pairs (s1,%1) and (se,t3) by saying, for example, that (s1,%1) 2= (s2, t2) iff $1 22 so and
t1 22 to. (The 2 notation is defined in table F.4, p. 389.) However, this approach
suffers from the problems that two complexity measurements may be incomparable
(for example if s; < so but t; = t3), and that it is difficult to define a numerical
measure of overall efficiency in this system. However, this simple complexity measure
still suffices for some purposes, such as for our proof in §3.4.

Space-time product complexity. One interesting, improved measure of complex-
ity is the product of space and time complexity. This comes closer to a true measure
of cost because it increases monotonically with both space and time and allows com-
parisons between any two instances. It can be viewed as a measure of rental cost, the
cost of renting a computer having storage capacity s for a period of time ¢; we might
expect such a cost to be roughly linear in both storage capacity and time. Another
way to look at the product is as a measure of the total volume of spacetime (as in
the theory of relativity) that is dedicated to the computation.

However, even the space-time product is still somewhat inaccurate, since it does not
take into account that a particular algorithm may not have constant space usage over
time, and that the resources that are unused by the algorithm during a particular
period of time can (in an appropriate machine architecture) be used for solving other
problems during that time, thus reducing the effective cost of the program whose
complexity we are measuring.

Another point is that besides spacetime volume, there is another resource that a
computation uses up: namely, free energy. Energy that is dissipated by the computer
is forever unavailable for use in other computations, because it is in a disorganized,
maximum-entropy form that cannot do useful work. (We discussed these issues in
much more detail in §2.5.) So this dissipation has a cost. In fact, in contexts such
as battery-powered portable computers, the energy costs may be fairly high because
the readily-available supply of energy is so limited. So a comprehensive model ought
to take energy costs into account. One way to characterize free energy loss is by the

3.2.2. CHARACTERIZING COMPUTATIONAL COMPLEXITY 95

total amount of entropy that is generated during the computation (Sioy).

Finally, there is the point that the storage space itself can be separated into
several constituent entities that separately contribute to the total rental costs: the
mass-energy of the computation/storage medium, the volume of physical space it
occupies, and perhaps even its surface area (real estate it occupies). Mass-energy
can be further broken down into free energy and rest mass, which can be further
decomposed into the cost of various types of constituent components and the raw
materials that they are made of; but we will not go this far in our modeling.

These observations lead to the following new complexity measures.

Comprehensive physical cost complexity. For a computation (or really, any)
process that increases total entropy by S, takes total real time ¢, and that at times
0 < 7 <t (between the start and end of the computation) occupies spatial volume
V(7), contains free energy E(7), rest mass M (7), and has a minimum surface area of
A(1), we define the comprehensive physical cost $. of the process as

$. = £55 +/t [.,EVV(T) + £LpE(1) + LM (T) + £AA(T)| dT (3.2)

where the various £x > 0 are cost coefficient constants whose values are parameters
of the cost model. The £x convert all cost elements to some canonical cost unit,
perhaps even a monetary unit.

This cost model is very comprehensive, probably more so than needed. In our
explorations of the efficiency of reversible and irreversible machines in chapter 5, we
have found that not all of the above terms need to be included in the cost model in
order to find the optimal machine configurations for the kinds of computational tasks
we have considered so far. So we also suggest a simplified version of this model.

Simplified physical cost complexity. For a computation process that generates
entropy S, takes total real time ¢, and that at times 0 < 7 < ¢ requires a free energy
allocation of E(7), we define the simplified physical cost $; of the process as

t
$, = £Ss+/ £1E dr (3.3)
0

where the £ > 0 constants are parameters of the cost model. Given the Margolus-
Levitin bound on computation rate from §2.4, the second term in this cost measure
can be considered a measure of the maximum number of states that could be traversed
using the given energy profile over the given time.

We propose that cost models like the above are appropriate for exploring the asymp-
totic physical limits of computation.

56 CHAPTER 3. REVERSIBLE COMPUTING THEORY

3.2.3 Complexity classes

A complexity measure tells us how to assign a cost to a particular instantiation of a
computation process. In chapter 4 we will discuss a variety of models of computation
processes. Given a complexity measure and a model of computation, we can char-
acterize the complexity of any program written for that model, as a function of the
length n;, of its input (in bits, say). The program complexity for length ny, is often
defined as the worst-case complexity of the program over all the inputs of length n;,.

Further, we can define the complexity of a given task under a model of computation
as the complexity of the program that performs that task with the lowest program
complexity, on that model.

A complezxity class is the set of all problems that can be solved under a given
model of computation within given bounds on asymptotic complexity, according to a
given complexity measure.

3.3 Review of existing reversible computing
theory

In this section we review the past developments in reversible computing theory. Much
of our predecessors’ work can be interpreted as an attempt to compare the compu-
tational efficiency of reversible and irreversible machines under various complexity
measures and models of computation. In this section we will show how each of the
existing results can be interpreted in this way, and then in §3.4 and ch. 5 we will carry
this effort onward to the new complexity measures that we proposed in §3.2.2.3.

3.3.1 Reversible models of computation

Reversible models of computation can be easily defined in general as models of com-
putation in which the transition function between machine configurations has a single-
valued inverse. In other words, the directed graph showing allowed transitions be-
tween states has in-degree 1. In this thesis we will always deal with machines that
are deterministic, so that the configuration graph always has out-degree one as well.
See figure 3-1, p. 57.

3.3.2 Computability in reversible models

As we already noted in §3.1.1, one of the most important questions to answer for any
new kind of computation is “What functions it can compute at all?” This comes before
efficiency questions, since obviously a machine’s efficiency at a task is meaningless if
the machine cannot even perform the task.

3.3. REVIEW OF EXISTING REVERSIBLE COMPUTING THEORY o7

NP

Irreversible Reversible

Figure 3-1: Machine configuration graphs in (deterministic) reversible and irreversible
models of computation.

In the configuration graphs of irreversible machines, configurations may have many
different predecessor configurations. In reversible models of computation, each config-
uration may have at most one predecessor. The configuration graph therefore consists
of disjoint loops and chains, which may be infinite. In both reversible and irreversible
models we may, if we wish, permit configurations having 0 predecessors (initial states)
and/or 0 successors (final states).

3.3.2.1 Unbounded-space reversible machines are Turing-universal

In his 1961 paper [79], Landauer had already pointed out that arbitrary irreversible
computations could be embedded into reversible ones by simply saving a record of all
the information that would otherwise be thrown away (cf. §3 of [79]). This observation
makes it obvious that reversible machines with unbounded memory can certainly
compute all the Turing-computable functions.

We will call this idea, of embedding an irreversible computation into a reversible
one by saving a history of garbage, a “Landauer embedding,” since Landauer seems
to have been the first to suggest it.

3.3.2.2 Reversible finite automata are especially weak

In contrast, in 1987 Pin [111] investigated reversible finite automata, which he defined
as machines with fixed memory reading an unbounded-length one-way stream of data,
and found that they cannot even decide all the regular languages, which means that
technically they are strictly less powerful than normal irreversible finite automata,
which are in turn strictly less powerful than unbounded-space Turing machines.

So there are functions computable by an irreversible machine with fixed memory
that no purely reversible machine with fixed memory can compute, given an external

58 CHAPTER 3. REVERSIBLE COMPUTING THEORY

one-way stream of input. We should note, however, that this incapacity might be due
solely to the non-reversible nature of the input flow, rather than to the finiteness of the
automaton memory itself. Conceivably, if a finite reversible machine was permitted
to read backwards as well as forwards through its read-only input, and perform some
sort of “unread” operations, it might then be able to recognize any regular language.
But we have not investigated that possibility in detail.

That issue aside, in the rest of this thesis we consider models of computation that
permit access to arbitrarily large amounts of memory as input sizes increase. For
such machines, pure computability is no longer an issue, and we turn to questions of
computational efficiency.

3.3.3 Time complexity in reversible models

One of the most common simple measures of computational cost we have seen is “time
complexity,” which in a theoretical computer science context often means the number
of primitive operations performed. Landauer’s suggestion (cf. §3 of [79]) of embedding
each irreversible operation into a reversible one makes it clear that the number of
such operations in a reversible machine need not be larger than the number for an
irreversible machine, as was demonstrated more explicitly by many later embeddings
e.g., [81, 16]. So under the time complexity measure by itself, reversibility does not
hurt.

Can a reversible machine perform a task using fewer computational operations
than an irreversible one? Obviously not, if we take reversible operations to just be
a special case of irreversible operations. However, physically speaking, actually it is
the converse that is true: so-called “irreversible” operations, implemented physically,
are really just a special case of reversible operations, since physics is always reversible
at a low level. We will see the implications of this for physical time complexity
in ch. 5. But, using the usual computer-science definition of time as the number
of computational operations required, clearly reversible machines can be no more
“time”-efficient than irreversible ones.

Although Lecerf and Bennett explicitly discussed their time-efficient reversible
simulations only in the context of Turing machines, the approach is easily generalized
to any model of computation in which we can give each processing element access
to an unbounded amount of auxiliary unit-access-time stack storage. For example,
based on Toffoli’'s embedding [134], one could use essentially the same trick to create a
time-efficient simulation of irreversible cellular automata on reversible ones, by using
an extra dimension in the cell array to serve as a garbage stack for each cell of the
original machine. (To actually recycle the garbage in a CA, we would also need a
boundary condition that applies globally after an appropriate amount of time in order
to reverse the simulation.)

3.3. REVIEW OF EXISTING REVERSIBLE COMPUTING THEORY 99

3.3.4 Reversible entropic complexity

The original point of reversibility was not to reduce time but to reduce energy dissipa-
tion, or in other words entropy production. Can this be done by reversible machines?
In 1961 Landauer [79] argued that it could not, since if we cannot get rid of the
“garbage” bits that are accumulated in memory, they just constitute another form
on entropy, no better in the long term than the kind produced if we just irreversibly
dissipated those bits into physical entropy right away.

3.3.4.1 Lecerf reversal

However, in 1963, Lecerf [81] formally described a construction in which an irreversible
machine was embedded into a reversible one that first simulated the irreversible ma-
chine running forwards, then turned around and simulated the irreversible machine
in reverse, uncomputing all of the history information and returning to a state corre-
sponding to the starting state. If anyone familiar with Landauer’s work had noticed
Lecerf’s paper in the 1960’s, it would have seemed tantalizing, because here was Lecerf
showing how to reversibly get rid of the garbage information that was accumulated
in Landauer’s reversible machine in lieu of entropy. So maybe the entropy production
can be avoided after all!

Unfortunately, Lecerf was apparently unaware of the thermodynamic implications
of reversibility; he was concerned only with determining whether certain questions
about reversible transformations were decidable. Lecerf’s paper did not address the
issue of how to get useful results out of a reversible computation. In Lecert’s em-
bedding, by the time the reversible machine finishes its simulation of the irreversible
machine, any outputs from the computation have been uncomputed, just like the
garbage. This is not very useful!

3.3.4.2 The Bennett trick

Fortunately, in 1973, Charles Bennett [16], who was unaware of Lecerf’s work but
knew of Landauer’s, independently rediscovered Lecerf reversal, and moreover added
the ability to retain useful output. The basic idea was simple: one can just reversibly
copy the desired output into available memory before performing the Lecerf reversal!
As far as we can tell, this trick had not previously occurred to anyone.

Bennett’s idea suddenly implied that reversible computers could in principle be
more efficient than irreversible machines under at least one cost measure, namely
entropy production. To compute an output on an irreversible machine, one must
produce an amount of entropy roughly equal to the number of (irreversible) operations
performed; whereas the reversible machine in principle can get by with no new entropy
production, and with an accumulation of only the desired output in memory.

60 CHAPTER 3. REVERSIBLE COMPUTING THEORY

3.3.4.3 Entropy proportional to speed

Unfortunately, absolutely zero entropy generation per operation is achievable in prin-
ciple only in the ideal limit of a perfectly-isolated ballistic (frictionless) system, or
in a Brownian-motion-based system that makes zero progress forwards through the
computation on average, and takes ®(n?) expected time before visiting the nth com-
putational step. In useful systems that progress forwards at a positive constant speed,
the entropy generation per operation appears to be, at minimum, proportional to the
speed. (We do not yet know how necessary this relationship is, but it appears to be
the case empirically.) A cost analysis that takes both speed and entropy into account
will need to recognize this tradeoff. We do this is chapter 5.

3.3.5 Reversible space complexity

In addition to the number of computational operations performed and the entropy
produced, another important element of cost is the number S of memory cells that
are required to perform a computation.

3.3.5.1 Initial estimates of space complexity.

As Landauer pointed out [79], his simple strategy of saving all the garbage information
appears to suffer from the drawback that the amount of garbage that must be stored
in digital form is as large as the amount of entropy that would otherwise have been
generated. If the computation performs on average a constant number of irreversible
bit-erasures per computational operation, then this means that the memory usage
becomes proportional to the number of operations. This means a large asymptotic
increase in memory usage for many problems; up to exponentially large. Even if the
garbage is uncomputed using Lecerf reversal, this much space will still be needed
temporarily during the computation.

3.3.5.2 Bennett’s pebbling algorithm

In 1989, Bennett [19] introduced a new, more space-efficient reversible simulation
for Turing machines. This new algorithm involved doing and undoing various-sized
portions of the computation in a recursive, hierarchical fashion. Figure 3-2 is a
schematic illustration of this process. We call this the “pebbling” algorithm because
the algorithm can be seen as a solution to a sort of “pebble game” or puzzle played
on a one-dimensional chain of nodes, as described in detail by Li and Vitényi '96 [86].
(Compare figure 3-2(a) with fig. 3-7 on page 76.) We will discuss the pebble game
interpretation and its implications in more detail in §3.4.2.

3.3.5. REVERSIBLE SPACE COMPLEXITY 61

0 Segments completed — 8 0 Segments completed — 9
L | | 1 | | | 1] L 1 | | 1 1 | | 1]
07 (
10 10 -
%)
5 20 20 A
=
=) _ .
=2
S
= 30 1 30 A
=
o _ i
\’
40 40 7
50 50 A
(@) (b)

Figure 3-2: Illustration of two versions of Bennett’s 1989 algorithm for reversible
simulation of irreversible machines. Diagram (a) illustrates the version with k = 2,
diagram (b) the version with k = 3. (See text for explanation of k.)

In both diagrams, the horizontal axis indicates which segment of the original
irreversible computation is being simulated, whereas the vertical axis tracks time
taken by the simulation in terms of the time required to simulate one segment. The
black vertical lines represent times during which memory is occupied by an image of
the irreversible machine state at the indicated stage of the irreversible computation,
whereas the shaded areas within the triangles represent memory occupied by the
storage of garbage data for a particular segment of the irreversible computation being
simulated.

Note that in (b), where k = 3, the 9th stage is reached after only 25 time units,
whereas in (a) 27 time units are required to only reach stage 8. But note also that
in (b), at time 25, five checkpoints (after the initial state) are stored simultaneously,
whereas in (a) at most four are stored at any given time. This illustrates the general
point that higher-k versions of the Bennett algorithm run faster, but consume more
memory.

62 CHAPTER 3. REVERSIBLE COMPUTING THEORY

The overall operation of the algorithm is as follows. The irreversible computation
to be simulated is broken into fixed-size segments, whose run time is proportional
to the memory required by the irreversible machine. The first segment is reversibly
simulated using a Landauer embedding (§3.3.2.1). Then the state of the irreversible
machine being simulated is checkpointed using the Bennett trick of reversibly copying
it to free memory. Then, we do a Lecerf reversal (§3.3.4.1) to clean up the garbage
from simulating the first segment.

We proceed the same way through the second segment, starting from the first
checkpoint, to produce another checkpoint. After some number & of repetitions of
this procedure, all the previous checkpoints are then removed by reversing everything
done so far except the production of the final checkpoint. Now we have only a single
checkpoint which is k& segments along in the computation. We repeat the above
procedure to create another checkpoint located another k£ segments farther along,
and then again, and again k times, then reverse everything again at the higher level
to proceed to a point where we only have checkpoint number k2 in memory. The
procedure can be applied indefinitely at higher and higher levels.

In general, for any number n of recursive higher-level applications of this proce-
dure, k™ segments of irreversible computation are be simulated by (2k —1)" reversible
simulations of a single segment, while having at most n(k — 1) intermediate check-
points in memory at any given time [19].

The upshot is that if the original irreversible computation takes time T and space
S, then the reversible simulation via this algorithm takes time O(T!™€) and space
O(SlogT) = O(S?). As k increases, the € approaches 0 (very gradually), but unfor-
tunately the constant factor in the space usage increases at the same time [84].

Li and Vitdnyi ’96 [86] proved that Bennett’s algorithm (with & = 2) is the most
space-efficient possible pebble-game strategy for reversible simulation of irreversible
machines.

Crescenzi and Papadimitriou '95 [36] later extended Bennett’s technique to provide
space-efficient reversible simulation of nondeterministic Turing machines as well.

3.3.5.3 Achieving linear space complexity

Bennett’s results stood for almost a decade as the most space-efficient reversible
simulation technique known, but in 1997, Lange, McKenzie, and Tapp [80] showed
how to simulate Turing machines reversibly in linear space—but using worst-case
exponential time. Their technique is very clever, but simple in concept: Given a
configuration of an irreversible machine, they show that one can reversibly enumerate
its possible predecessors. Given this, starting with the initial state of the irreversible
machine, the reversible machine can traverse the edge of the irreversible machine’s
tree of possible configurations in a reversible “Euler tour.” (See figure 3-3.) This is

3.3.5. REVERSIBLE SPACE COMPLEXITY 63

Legend

Configuration
QO of irreversible
machine.
Initial Final

State transition
state state

— of irreversible
machine.

Path taken
by reversible
simulation.

Figure 3-3: Illustration of an Euler tour of an irreversible machine’s computation tree.
Although the tree has branches, the Euler tour is itself both forward- and reverse-
deterministic, and so can be traversed in purely reversible fashion, using no more
space than is needed to keep track of the current irreversible machine configuration
(80].

analogous to using the “right-hand rule” technique (move forward while keeping your
right hand on the wall) to find the exit of a planar non-cyclical maze. The search
for the final state is kept finite, and the space usage is kept small, by cutting off
exploration whenever the configuration size exceeds some limit. Unfortunately, the
size of the pruned tree, and thus the time required for the search, is still, in the worst
case, exponential in the space bound.

Lange et al. originally thought that a limit on the size of the final state was
required to be known in advance of the computation in order to guarantee finding the
final state, but after seeing a draft of their paper, I pointed out to them (in personal
discussions) that in fact, one could determine the appropriate limit dynamically by
simply traversing repeatedly around and around the tree, advancing to a successively
higher size limit each time the initial state is re-encountered, until the size limit is
made large enough that the final state is found. This approach does not increase the
worst-case asymptotic run-time, because that time is dominated anyway by the final
traversal around the tree, due to the exponential nature of the worst-case branching.

As with Bennett’s techniques, the Lange-McKenzie-Tapp technique was defined
explicitly only in terms of Turing machines, but it is easily generalized to many
different models of computation.

The above time and space complexity results for reversible simulation (§3.3.3 & §3.3.5)

64 CHAPTER 3. REVERSIBLE COMPUTING THEORY

are very interesting in themselves, but to our knowledge, no one has yet directly
addressed the question of whether a single reversible simulation can run in linear
time like Bennett’s 1973 technique and in linear space like the new Lange et al.
technique. Li and Vitdnyi’s analysis [86] of Bennett’s 1989 algorithm [19] leads to our
proof in §3.4 that if such an ideal simulation exists, it would not relativize to oracles,
or work in cases where the space bound is much less than the input length.

3.3.6 Miscellaneous developments

Here, we mention in passing a few more miscellaneous developments in reversible
computing theory, but we do not go into them in detail.

Coppersmith and Grossman (1975, [32]) proved a result in group theory which
implies that reversible boolean circuits only 1 bit wider than a fixed-length input
can compute arbitrary boolean functions of that input. (Thanks to Alain Tapp for
bringing this paper to our attention.)

Toffoli (1977, [134]) showed that reversible cellular automata can simulate irre-
versible ones in linear time using an extra spatial dimension. Fredkin and Toffoli also
developed much reversible circuit theory (1980-1982, [135, 136, 62]).

As we already mentioned in §3.3.2.2, Pin (1987 [111]) showed that reversible finite
automata (defined in a certain way) cannot decide all regular languages.

3.4 Reversible vs. irreversible space-time
complexity

In this section we prove that reversible machine models require higher asymptotic
complexity on some problems than corresponding irreversible models, if a certain new
reversible black-box operation is made available to both models. Thus, no completely
general technique can exist for simulating irreversible machines on reversible ones
with no asymptotic overhead.

However, the new primitive operation that we defined in order to make this proof
go through is not itself physically realistic. The operation implements a computable
function, but the operation is modeled as taking constant (©(1)) time to perform
independent of the size of its input, which violates physical locality (ref. §2.1) and
the asymptotically very large number of steps that it would take to compute the
operation using the algorithm that corresponds directly to the operation’s definition.

Therefore, technically, even given our proof, it is still an open question whether
a perfect simulation technique might still exist that works in the case of reversible
machines simulating irreversible machines that are composed only of primitives that
are physically realistic in the sense of obeying locality. However, if one wishes to

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 65

progress to complete physical realism, then irreversible machines are themselves al-
ready reversible at the micro-level (§2.5), and therefore are efficiently implementable
on reversible machines, as we will see in ch. 5.

Nevertheless, we conjecture that if the constraint of physical reversibility is ig-
nored, then reversible machines are strictly less efficient on some problems than irre-
versible machines, even if the machines are constrained to be physically realistic in all
other respects. If this conjecture is true, then in combination with our results of ch. 5,
it would follow that the constraint of physical reversibility is not independent of other
physical constraints from a computational complexity perspective, and that it must
be taken into account in order to have a realistic physical model of computational
complexity, as we will discuss in ch. 4.

If our conjecture were false, and irreversible models can be simulated with no
overhead on reversible machines, then one would not necessarily have to explicitly
incorporate reversibility in a model of computation in order for it to qualify as an
accurate model for predicting problem complexity, such as we advocate in ch. 4. But
as a matter of opinion, we consider that possibility a priori to be very unlikely.

In this section, we will prove our results in both oracle-relativized and non-oracle
forms for serial (uniprocessor) machines. The oracle results cover a large family of
possible asymptotic bounds on the joint space and time requirements of machines.
For all bounding functions within this family, we show that there exist an oracle and
a language such that the language is decidable within the given bounds by serial
machines that can query the oracle only if the machines are irreversible. This result
is non-trivial (compared to Pin’s, for example) because the individual oracle calls are
themselves reversible and easy to undo.

A similar result, not involving an oracle, covers cases where the space bound
is much smaller than the length of the randomly (and reversibly) accessible input.
Corollaries to both the oracle and non-oracle results give loose lower bounds on the
amount of extra space required for a reversible machine to decide the language within
the time bounds.

Another contribution of our proof is to illustrate ways to use incompressibility
arguments in analyzing reversible machines. It is conceivable that similar techniques
might increase the range of reversible and irreversible space-time complexity classes
that we can separate without resorting to the oracle.

Acknowledgment. Some ideas in the proof below originated with M. Josephine
Ammer, who was an undergraduate research assistant in our group at the time this
work was done. Ms. Ammer also assisted with the writing of the original manuscript
[57] from which this section is derived. That manuscript has not yet been formally
published, but some version of it may be in the future.

66 CHAPTER 3. REVERSIBLE COMPUTING THEORY

3.4.1 General definitions

Space-time complexity classes. Given any reversible model of computation (e.g.,
reversible Turing machines), and given any computational space and time bounding
functions S(nin), T(nin), we define the reversible space-time S, T complexity class,
abbreviated RST(S, T), to be the set of languages that are accepted by reversible
machines that take worst-case space of O(S(ni,)) memory bits and worst-case time
O(T(nin)) ticks, where n;, is the length of the input. Similarly, we define the un-
restricted space-time S, T complezity class, abbreviated ST(S, T), to be the set of
languages accepted in that same order of space and time on the corresponding nor-
mal machine model, without the restriction on the in-degree of the transition graph.
For oracle-relativized complexity classes, we use the notation C©, as is standard in
complexity theory, to indicate the class of problems that can be solved by the ma-
chines that define the class C if they are allowed to query oracle O.

We want to know whether RST(S, T) Z ST(S, T), for all S, T, in normal sorts of
serial computational models such as multi-tape Turing machines or RAM machines.

Unfortunately, we have found this question, in its purest form, very difficult to
definitively resolve. We do not see any general way to simulate normal machines on
reversible machines without suffering asymptotic increases in either the time or space
required. But neither do we know of a language that can be proven to require extra
space or time to recognize reversibly in ordinary machine models. The difficulty is in
constructing a proof that rules out all reversible algorithms, no matter how subtle or
clever.

But is the RST(S, T) < ST(S, T) question truly difficult to resolve, or have we
just been unlucky in our search for a proof? Often in computational complexity
theory, we find ourselves unable to prove whether or not two complexity classes (for
example, P and NP) are equivalent. Traditionally (as in [9]), one way to indicate
that such an equivalence might really be difficult to prove is to show that if the
machine model defining each class is augmented with the ability to perform a new
type of operation (a query to a so-called “oracle”), then the classes may be proven
either equal or unequal, depending on the behavior of the particular oracle. This
shows that any proof equating or separating the two classes must make use of the
fact that normal machine models are only capable of performing a particular limited
set of primitive operations. Otherwise, we could just add the appropriate oracle
call as a new primitive operation, and invalidate the supposed proof. In complexity
theory, it is said that any proof of the equivalence or inequivalence of the two classes
must not “relativize,” that is, it does not remain valid relative to models that are
augmented with oracles. Reputedly, this rules out a large number of proof techniques
from recursion theory, and means that resolving the question will be more difficult.

In this section we will demonstrate, for any given S, T in a large class, an oracle

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 67

A relative to which we prove RST(S, T)# # ST(S, T)4, for the case of serial machine
models with a certain kind of oracle interface. For these same S, T we have not yet
found an alternative oracle B for which RST(S, T)? = ST(S, T)®. It may be that
none exists, but this is uncertain.

Reversible oracle interface. First, we define an oracle interface that allows a re-
versible machine to call an oracle. Ordinarily, oracle queries are irreversible, and thus
impossible in reversible machines. For example, a bit of the oracle’s answer cannot
just overwrite some storage location, because regardless of whether the location con-
tained 0 or 1 before the oracle call, after the call it would contain the oracle’s answer.
The resulting configuration would thus have two predecessors, and the machine would
be irreversible.

Our reversible oracle-calling protocol is as follows. Machines will have reversible
read and write access to a special oracle tape which has a definite start, unbounded
length, and is initially clear. At any time, the machine is allowed to perform an oracle
call, a special primitive operation which in a single step replaces the entire contents
of the oracle tape with new contents, according to some fixed invertible mapping
A : C — C over the space C of possible tape contents. The function A is called
a permutation oracle. Further, if A is its own inverse, A = A~!, it will be called
self-reversible. Presented more formally:

Definition 3.1. A permutation oracle A is an invertible (bijective) function
A :C — C, where C is the space of possible contents of a semi-infinite oracle tape.

Definition 3.2. A self-reversible (permutation) oracle is a permutation oracle A such
that A = A~L.

In the below, we will deal only with self-reversible oracles. Self-reversibility ensures
that machines can easily undo oracle operations, just as they can easily undo their
own internal reversible primitives. If oracle calls were hard to undo, then the oracle
model would be unlikely to teach us anything meaningful about ordinary machines.

ST-constructibility. In order for our proof to go through, we will need to restrict
our attention to space and time functions S(ny,), T(ny,) which are ST-constructible,
meaning that given any input of length n;,, an irreversible machine can construct
binary representations of the numbers S(n;,) and T(n;,) using only space O(S(nyy))
and time O(T(ni,)). We state here without proof that many reasonable pairs of
functions are indeed ST-constructible. For example, S = n2,, T = n? can both be

computed in time O(log? ny,) plus O(ny,) to count the input bits, and space O(log niy)
plus O(ni,) if we include the input.

Next, we need some basic definitions to support the notion of incompressibility that
will be crucial to the proof of our theorem. The following definition and lemma follow

68 CHAPTER 3. REVERSIBLE COMPUTING THEORY

Q A possible oracle tape configuration.
— Mapping performed by oracle call operation.

\/Q®
e gf;z 1Ys

Figure 3-4: Illustration of the structure of (a) a permutation oracle, and (b) a self-
reversible permutation oracle.

In either case, the oracle call operation replaces the old contents of the oracle
tape with new contents according to a transition function A : C — C that is a per-
mutation mapping—a bijective function—over the space C of possible tape contents.
The bijectivity of this function means that a call to a permutation oracle is always
a reversible operation. After an oracle call, the previous oracle tape contents can be
uniquely determined by applying the inverse mapping A~!. In self-reversible oracles,
A=A"1

(b)

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 69

the spirit of the discussions of incompressibility in Li and Vitanyi’s excellent book on
Kolmogorov complexity [85].

Description systems and compressibility. A description system s is any func-
tion s: {0,1}* — {0,1}* from bit-strings to bit-strings, that is, from descriptions
to the bit-strings they describe. We say that a bit-string d describes bit-string x in
description system s if s(d) = x. We say that a bit-string = is compressible in de-
scription system s if there is a shorter bit-string that describes it; i.e. if there exists a
string d such that s(d) = z and |d| < |z|, where the notation |b| denotes the number
of bits in bit-string b.

Lemma 1. FEzistence of incompressible strings. For any description system s, and
any string length /, there is at least one bit-string = of length ¢ that is not compressible
in s.

Proof. (Trivial counting argument.) There are 2¢ bit-strings of length ¢, but
there are only Zf;é 2! = 2¢ — 1 descriptions that are shorter than ¢ bits long. Each
description d can describe at most one bit string of length ¢, namely the string s(d) if
that string’s length happens to be /. Therefore there must be at least one remaining
bit-string of length ¢ that is not described by any shorter description. [

In our main proof, we will be selecting incompressible strings from a series of
computable description systems.

Notational conventions. In the following, we will often abbreviate the space and
time function values S(ni,) and T(ni,) by just S and T, respectively; likewise for other
functions of n;,. For comparing orders of growth, we will use both the standard ©,
O, Q, o, w notations, and our mnemonic custom ~, 3, =~ < > notation, defined in
table F.4 on p. 389.

3.4.2 Oracle results

Theorem 3.1. Relative separation of reversible and irreversible space-time
complexity classes. Let S, T be any two non-decreasing functions over the non-
negative integers. Then the following are true:

(a) If S = T or T = 25 then RST(S,T)? = ST(S, T)? for any self-reversible
oracle O.

(b) If S < T < 25, and if S, T are ST-constructible, then there exists a computable,
self-reversible oracle A such that RST(S, T)4 # ST(S, T)4.

Proof.

Part (a). (Cases S >~ T and T - 25.) First, if S = T, then obviously we have both
RST(S,T)? = RST(T, T)? and ST(S,T)? = ST(T, T)? simply because in time T
no more than S ~ T memory cells can be accessed on a machine that performs (1)

70 CHAPTER 3. REVERSIBLE COMPUTING THEORY

operations per time step. Similarly, if T = 25 then RST(S,T)? = RST(S,2%)°
and ST(S,T)? = ST(S,2%)?, because no computation using only S bits of memory
can run for more than 2° steps without repeating. So part (a) reduces to proving
RST(S,T)? = ST(S, T)? only for the case where S ~ T or T ~ 25,

From here, the result follows due to the existing relativizable simulations. When
S ~ T, Bennett’s simple reversible simulation technique [16] can be applied because
it takes time O(T) and space O(T). Similarly, when T ~ 25 the simulation of Lange
et al. [80] can be used because it takes time O(2%) and space O(S). Both techniques
can be easily seen to relativize to any self-reversible oracle O. Thus, in both cases,
any irreversible machine can be simulated reversibly in O(T) and space O(S), and
therefore RST(S, T)? = ST(S, T)°.

Part (b). (Case S < T < 2%.) Outline: We will construct A to be a permuta-
tion oracle that can be interpreted as specifying an infinite directed graph of nodes
with outdegree at most 1. We will also define a corresponding language-recognition
problem, which will be to report the contents of a node that lies T/S nodes down an
incompressible linear chain of nodes that have size-S identifiers, starting from a node
that is determined by the input length. The oracle will be explicitly constructed via
a diagonalization, so that for each possible reversible machine, there will be a par-
ticular input for which our oracle makes that particular reversible machine take too
much space or else get the wrong answer. In the cases where the reversible machine
takes too much space, we will prove this by equating the machine’s operation with
the “pebble game” for which Li and Vitanyi [86] have already proven lower bounds,
and by showing that if the machine does not take too much space, then we can build
a shorter description of the chain of nodes using the machine’s small intermediate
configurations, thus contradicting our choice of an incompressible chain.

For the formal proof of part (b), we need some special definitions.

Definition 3.3. A graph oracle is a self-reversible permutation oracle with the follow-
ing property: There exists a partial function f: {0,1}* — {0,1}*, called a successor
function, such that for any bit string (node) b € {0,1}* for which f is defined, the
oracle’s permutation function maps the tape contents b to the tape contents b#f(b),
and also maps b#f(b) back to b, where # is a special separator character in the ora-
cle tape alphabet. For all tape contents x not of either of these forms, the oracle’s
permutation function maps them to themselves. See fig. 3-5.

Given that we will be working only with graph oracles, we can now specify an
oracle by specifying just the successor function f that it embodies. But before we
actually construct the special oracle A that proves our theorem, let us define, relative
to A, the language that we claim separates RST(S, T)# from ST(S, T)“.

Definition 3.4. Given two ST-constructible functions S(n), T(n), and graph oracle
A with successor function f, we define the difficult language L(A) to be the language

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 71

A N\
a a#fc
a NG, 4 A N\
\ P C cHd
c—»d NP, 4
b/' b b#c O
e—>g N7 AN X
e e#g
N 4

Figure 3-5: Encoding outdegree-1 directed graphs in self-reversible permutation ora-
cles. Letters stand for nodes represented as bit-strings, except for x which represents
any other bit-string not explicitly shown. The # is a special separator character.

On the left, we show an example of an outdegree-1 directed graph with bit-string
nodes abbreviated a,b,c,d,e,g. The graph function f gives the successor of each node:
f(a) =c, f(c) =d, etc. This f is a partial function; e.g. f(d) is undefined. For each
edge in this graph, there is a corresponding pair of strings that are mapped to each
other by the self-reversible oracle. To represent the edge a — c, for example, the
permutation oracle maps tape contents “a” to “a#c” and maps “a#c” back to “a”.
Any other string z (including those for terminal nodes of the graph) is simply mapped
to itself. In this way the permutation oracle allows easily and reversibly looking up a
node’s successor, or uncomputing a node’s successor given the node and its successor.
But finding a node’s predecessor(s), given just the node itself, is designed to be hard.
Thus the oracle call resembles the reversible computation of a “one-way” invertible
function that is easy to compute, but whose inverse is difficult to compute.

72 CHAPTER 3. REVERSIBLE COMPUTING THEORY

decided by the irreversible machine described by the following pseudocode:

Given input string w,
Let n = |w|, compute S = S(n), T = T(n).
Let bit-string b = 0°.
Repeat the following, t = | T/S| times:
Write b on oracle tape, and call oracle.
If result is of the form b#c, with ¢ a bit-string,
assign b < ¢ (note ¢ = f(b)),
else, quit loop early.
Accept iff 5[0] = 1.

In other words, given a string of length n, construct a string of zeros of length S(n).
Treat this string as a node identifier, and use oracle queries to proceed down its chain
of successors for up to |T/S| nodes. Finally, return the first bit of the final node’s
bit-string identifier.

We will be explicitly constructing the successor function f so that it always returns
a string of the same length as its input. Given the corresponding oracle, the above
algorithm requires only space O(S) and time O(T) on on irreversible machine in
any standard serial model of computation. (Recall that S, T are ST-constructible.)
Therefore the language L(A) will be in the class ST(S, T).

Now, we will specify how to construct f so that the language L(A) will not be
computable by any reversible machine that takes space O(S) and time O(T). The
way we will do this is to make each of the node identifiers be a different incompressible
string. Intuition suggests that the only way to decide L(A) is to actually follow the
entire chain of nodes, to see what the final one is. But having obtained a node’s
successor, the reversible machine cannot easily get rid of its incompressible records
of the prior nodes. The graph oracle provides no convenient way to compute f~* and
find a node’s predecessor, even if the successor function f happens to be invertible.
Thus the reversible machine will tend to accumulate records of previous nodes, of
size S(ny,) each, and thus, for sufficiently long enough chains, it will take more than
a constant factor times S(ny,) space. The reversible machine could conceivably find
and uncompute predecessor nodes by searching them all exhaustively, but this would
take too much time.

The situation with this oracle language resembles the non-oracle problem of it-
erating a one-way function, ¢.e. an invertible function whose inverse much is harder
to compute than the function itself (e.g., MD5). Public-key cryptography depends
on the (unproven, but empirically reasonable) assumption that some functions are
one-way. The same assumption might allow us to show that RST(S, T) # ST(S, T)
without an oracle, by using a one-way function instead.

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 73

incompressible chain of

t =|.T(n)/ S(n)] nodes
S(n) zeros A
input w 000...0 [/ N\
it £) @)@ -
wl=n —— — —— N low bit
~ of last

cee h \ node

Figure 3-6: The problem graph defined by our oracle for inputs of size n. The “correct
answer” is just the first bit of the final node ¢;. If the reversible machine M; that we
are trying to foil happens to get the right answer, but never asks for the successor of
node ¢;_1, we redefine g;_1’s successor to be a new node ¢’ having a different initial
bit.

all nodes size S(n)

Oracle construction. We now construct a particular oracle A and prove that
L(A) ¢ RST(S, T)A.

First, fix some standard enumeration of all reversible oracle-querying machines.
The enumeration is possible because reversible Turing machines, for example, can
be characterized by local syntactic restrictions on their transition function, as in
Lange et al., so we can enumerate all machines and pick out the reversible ones. Let
(M, c1), (Ms, cs),... be this enumeration dovetailed together with an enumeration
of the positive integers. If a given machine always runs in space O(S) and time O(T)
then it will eventually appear in the enumeration paired with a large enough ¢; so
that the machine M; takes space less than ¢; +¢;S(ni,) and time less than ¢;+¢; T (nyy)
for any input length ny,.

We will construct the oracle A so that each machine M; will fail to decide L(A)
within these bounds. When considering M;, f(q) will have already been specified for
all oracle queries ¢ asked by machines My, M, ..., M;_; when given certain inputs of
lengths ny,ng, ... ,n;_1, respectively. Now, choose n; (henceforth called n), the input
length for which our oracle definition will foil M;, to be such that S(n) is greater than
the maximum length z of any of those earlier machines’ oracle queries. Some other
lower bounds on the size of n will be mentioned as we go along.

Later we will specify a description system s; based on M;, ¢;, the value of n, and
all the f(q) values defined so far (for bit-strings smaller than S(n)). The description
system will be a total computable function, ¢.e., there is an algorithm that computes
si(d) for any d and always halts. We will use this description system to define f(q)
for bit-strings of length S(n), as follows:

Let be a bit-string of length T(n) that is incompressible in description system
s; (to be defined as we go along). This z will be used as the sequence of size-S(n)

74 CHAPTER 3. REVERSIBLE COMPUTING THEORY

node identifiers that will define our graph for inputs of size n.

Break z up into a sequence of ¢(n) = | T/S] bit-strings of length S(n) each; call
these our graph nodes or query strings qi,...,q. We will design our description
system s; so that all the ¢g;’s must be different. How? By allowing descriptions of the
form (j,k, '), where j and k are the indices of two equal nodes ¢; = qx, j < k, and
x' is x with the ¢, substring spliced out. The description system would be defined
to generate x from such a description by simply looking up the string ¢; in 2’ and
inserting a copy of it in the kth position. The indices j and k would take O(log(T/S))
space, which is O(log T) space, which is o(S) space, whereas we are saving S(n) space
by not explicitly including the repetition of g;. Therefore as long as n is sufficiently
large, the total length of this description of x would be less than T(n). With x being
incompressible in a description system that permits such descriptions, we know that
qi,---,q includes no repetitions.

Now we can specify exactly how the oracle defines our problem graph for inputs
of size n, as follows. Define query string gy = 0% (a string of S 0-bits). Provisionally,
set f(gj—1) = g; for all 1 < j <t. These assignments are possible since all the ¢;’s are
different, as we just proved. (They also must be different from gq, but this is easy to
ensure as well.) Given these assignments, all strings of length n are in the language
L(A) if and only if ¢;[0] = 1, due to the earlier definition of L(A). (Definition 3.2.)

Suppose temporarily that our oracle definition was completed by letting f remain
undefined over all strings w for which we have not yet specified f(w). (Le., let
A(w) = w for these strings.) Under that assumption, simulate M;’s behavior on the
input 0™. If M; runs for more than ¢; + ¢;T steps, then it takes too much time, and
we are through addressing it. Otherwise, M; either accepts (1) or rejects (0). If this
answer is different from ¢[0], then M; already fails to accept the language L(A), and
we are through with it.

Alternatively, suppose M;’s answer is correct with the given ¢;’s and it halts within
¢; +¢;T steps. But now suppose that M; never asked any query dependent on f(g; 1)
during its run on input 0™. That is, suppose M; never asked either query ¢;_; or query
gi—1#q;. In that case, let us change our definition of f(¢_;) as follows, to change the
correct answer to be the opposite of what M; gave. Let ¢ be a bit-string whose
successor was never requested in any query by M;, and whose first bit is the opposite
of M;’s answer. To ensure such strings exist, note there are %25 bit-strings of length
S having the desired initial bit, but M; can make at most ¢; + ¢;T queries since that
is its running time. We know T < 2%, so with sufficiently large n, 12° > ¢; + ¢;T,
and we can find our node ¢’. Now, given ¢, we change f(g;_1) to be ¢’. This cannot
possibly affect the behavior of M; since it never asked about f(g; 1). But the correct
answer is changed to the first bit of ¢/, the new node number ¢ in the chain. Thus
with this new partial specification of f, M; fails to correctly decide L(A), and we can
go on to foil other machines.

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 75

Finally, suppose M; does ask query ¢; ;. We now show how to complete the
definition of our description system s;, source of our incompressible x, so that if M;
does ask query ¢;_1, then it must at some point take more than c¢; + ¢;S space.

To do this, we show that M; can always be interpreted as following the rules of
Bennett’s reversible “pebble game,” introduced in [19] and analyzed by Li and Vitanyi
in [86].

Pebble game rules. The game is played on a linear list of nodes, which we will
identify with query strings ¢, ... ,q. At any time during the game some set of nodes
is pebbled. Initially, no nodes are pebbled. At any time, the player (in our case, M;)
may, as a move in the game, change the pebbled vs. unpebbled status of node ¢; or
any node g; for which the previous node g¢; ; is pebbled. Only one such move may
be made at a time.

The idea of the pebbled set is that we will make it correspond to the set of
nodes that is currently “stored in memory” by M;. Pebbling or unpebbling node g;
will require querying the oracle with query string g;_1 or g;_i#g;, respectively. The
goal of the pebble game is to eventually place a pebble on the final node ¢;. This
corresponds to the fact already established that M; must at some point ask query
gi—1 or the oracle can be constructed to foil it trivially.

Li and Vitdnyi’s analysis of the pebble game [86] showed that no strategy can win
the game for 2¥ nodes or more without at some time having more than k nodes pebbled
at once. We will show that our machine M; and its space usage can be modeled using
the pebble game, so that for some sufficiently large n, the space required to store
the necessary number of pebbled nodes will exceed M;’s allowable storage capacity
¢ + ¢S.

For the oracle A as defined so far, consider the complete sequence of configurations
of M; given input 0", notated Cy,Cs,...,Cr, where T' < ¢; + ¢; T is M;’s total
running time, in terms of the number of primitive operations (including oracle calls)
performed.

Now, for any time point 7, 1 < 7 < T, and for any node ¢; in the chain of
nodes qi, ... , ¢, define the previous query involving g; (written prev(g;))to mean the
most recent oracle query in M;’s history before time 7 in which the query string
(the one that is present on the oracle tape at the start of the query) is one of
{¢j-1,4, 4;#4j+1,9j—1#¢;}. There may of course be no such query in which case
prev(g;) does not exist. Similarly define the next query involving q; (written next(g;))
to mean the most imminent such query in M;’s future after time 7.

Definition 3. Node g; is pebbled at time 7 iff at time 7 either (a) prev(g;) exists
and is either (al) ¢;_1, (a2) g;, or (a3) ¢;#¢;;+1, or (b) next(g;) exists and is (bl) g¢;,
(b2) qj#q;t1, or (b3) gj_1#g;. (Exception: the final node ¢, is only considered pebbled
in cases (al) and (b3).)

Note that this definition implies that g; is not pebbled iff prev(g;) = g;j_1#¢; (or

76 CHAPTER 3. REVERSIBLE COMPUTING THEORY

8

7
S 6
,g
55
Z
S
o 3
ZZ

1

Move sequence —

Figure 3-7: Bennett’s reversible pebble game strategy. Highlights point out the move
made at each step. (Compare with fig. 3-2(a), page 61, rotated 90°.)

A node g; can be pebbled or unpebbled only if it is node ¢; or if the previous node
gj—1 is pebbled. The strategy invented by Bennett [19], illustrated here, was shown
by Li and Vitdnyi to be optimal [87] in terms of the number of pebbles required. But
even with this optimal strategy, to pebble node 2* we must at some time have more
than k nodes pebbled. In this example, we reach node 22 = 8 but must use 4 pebbles
to do so. (After pebbling node 8, we can remove all pebbles by undoing the sequence
of moves.) The fact that a constant-size supply of pebbles can only reach outwards
along the chain a constant distance is crucial to our proof.

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 77

Query q; at step #71 Query qj#qur arT

Query String

~
~ X
|

971
S
+

=

|

|

qj#qj 1]
I i
|

1

1

1

1

I .t w711 1 .. T
Time Step

Figure 3-8: Triangle representation of oracle queries.

The shape and direction of the triangle is meant to evoke the fact that at the
times just before and after an oracle query, the oracle tape contains the shorter string
g; at one of the times, and the longer string g;#g;;, at the other time. The set of
triangles defines the set of pebbled nodes at any time, as illustrated in figure 3-9.

nonexistent) and next(g;) = ¢;_1.

Figure 3-9 illustrates the intuition behind this definition using the graphical nota-
tion introduced in fig. 3-8. This graphical notation is especially nice because it evokes
the image of playing the pebble game or running Bennett’s algorithm (compare fig. 3-9
with figs. 3-7 and 3-2).

The times at which a node is to be considered “pebbled” during a machine’s exe-
cution are indicated by the solid horizontal lines on 3-9. These times are determined,
according to definition 3 above, solely by the arrangement of triangles (representing
oracle queries, see fig. 3-8) on the chart. Each vertex of a triangle generates a line
of pebbled times for the corresponding node, extending horizontally away from the
triangle until it hits another triangle. Query string 0 is never considered pebbled
because it is not considered to be a node.

Let p denote the number of distinct nodes out of ¢q,...,q; that are pebbled at
time 7. We now lower bound the size of C,, i.e. M;’s space usage at time 7.

Lemma 2. Space to pebble p nodes. |C| > ipS.

Proof. Suppose C, were no larger than ipS bits. Then we can show that x
(the sequence of all ¢;’s) is compressible to a shorter description d which we will
now specify. Our description system s; will be defined to process descriptions of the
required form.

First, note that for each node ¢; that is pebbled at time 7, that node is pebbled

78 CHAPTER 3. REVERSIBLE COMPUTING THEORY

|
| C
e 4 | d
|
=23
wn | a
2 €
2 b
51 |
|
oL 1IN]

Figure 3-9: Visualizing the definition of the set of pebbled nodes. The times at which
a node is pebbled (indicated by solid horizontal lines on the chart) are determined, by
definition, solely by the identities and timing of oracle queries and the corresponding
arrangement of triangles (see fig. 3-8) on the chart. Each vertex of a triangle generates
a line of pebbled times for the corresponding node, extending horizontally away from
the triangle until it encounters another triangle. (Except query string 0 is never
pebbled, because it is not considered to be a node.)

The above example shows a pattern of queries similar to the one that would occur
if one tried to apply Bennett’s [19] optimal pebble game strategy. (Compare with
figs. 3-7 and 3-2.)

Node 2 is considered pebbled at time (a) both because of the previous and next
queries (triangles) involving node 2. Node 1 is not pebbled at times (b) because the
previous and next queries are ¢y#¢; and ¢, respectively. Node 4 is pebbled at all times
after (c) because even though there is no next query involving node 4, the previous
query involving node 4 exists and is of the right form (¢3). Node 3 is pebbled at time
(d) because although the previous query (e) is of the wrong form (ge#gs3), the next
query is okay.

Query (e) does not change the set of pebbled nodes and so is not considered to
be a move in the pebble game. All the other queries are considered to be pebbling or
unpebbling moves in the pebble game, depending on the direction of the corresponding
triangle.

In the machine configuration C'; at time 7, nodes 2, 3, and 4 are pebbled. But note
that the query string for node 2 can be found by simulating the machine backwards
from time 7 until query (e), and reading ¢ off of the oracle tape. And if g5 is given, we
can continue simulating backwards until we get to time (c), and read g4 off the oracle
tape as well. The ability to perform this sort of simulation, for any arrangement of
triangles, either forwards or backwards in time as needed to find out more than a
constant number of the pebbled nodes is what makes our incompressibility argument
work.

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 79

either because of the previous query involving g;, because of the next query involving
g;, or both. Therefore, either at least %p nodes are pebbled because of their previous
query, or at least %p nodes are pebbled because of their next query. Let D be a
direction (forwards or backwards) from time 7 in which one can find queries causing
h > %p nodes to be pebbled.

We now specify the shorter description d that describes x. It will contain an
explicit description of C;, which by our assumption is no longer than ipS. It will
also specify the direction D and contain a concatenation of all the g;’s that are not
pebbled because of queries in direction D. (Space: (t —h)S.) For each of the h nodes
g; that are pebbled because of a query in direction D, the description d will contain
the node index j and an integer A7; giving the number of steps from step 7 to the
time of the query. Also we include a short tag k; indicating which of the 3 possible
cases of queries causes the node to be pebbled. Each of the indices j takes space
O(logt) < log T < S, and each Ar; takes space O(log T) < S. The tag is constant
size. Thus for sufficiently large n, all h of the (j, A7;, k;) tuples together take less
than %hS space. Total space so far: less than ¢S. If £S < T, then z will contain some
additional bits beyond the concatenation of ¢,¢s...¢q;, in which case d includes those
extra bits as well. The total length of d will still be less than T = |z|.

We now demonstrate that the description d is sufficient to reconstruct x, and give
an algorithm for doing so. The function computed by this algorithm tells how our
description system s will handle descriptions of the form outlined above.

The algorithm will work by simulating M;’s operation in direction D starting from
configuration C;, and reading the identifiers of pebbled nodes from M;’s simulated
oracle tape as it proceeds. We can figure out which oracle queries correspond to which
nodes by referring to the stored times A7; and tags k;. Once we have extracted the
identifiers of all nodes pebbled in direction D, we print all the nodes out in the proper
order.

As an example, refer again to fig. 3-9. In the machine configuration marked at
time 7, nodes 2, 3, and 4 are pebbled. But note that the query string for node 2
can be found by simulating the machine backwards from time 7 until query (e), and
reading ¢, off of the oracle tape. And if g3 is known, we can continue simulating
backwards until we get to time (c), and read ¢4 off the oracle tape as well. The ability
to perform this sort of simulation, for any arrangement of triangles, either forwards
or backwards in time as needed to find out at least half of the pebbled nodes is what
makes our incompressibility argument work. The algorithm is described and verified
in more detail in the appendix.

Given d, the algorithm produces x, and with n chosen large enough, the length
of the description will be smaller than z itself, contradicting the assumption of z’s
incompressibility relative to s. Therefore for these sufficiently large n, all configura-
tions in which p nodes are pebbled must actually be larger than %pS. This completes

80 CHAPTER 3. REVERSIBLE COMPUTING THEORY

the proof of lemma 2. W

Now, given the definition of the set of pebbled nodes from earlier (defn. 3), it is
easy to see how M;’s execution history can be interpreted as the playing of a pebble
game. Whenever M; performs a query ¢; and node g;;1 was not already pebbled
immediately prior to this query, we say that M; is pebbling node g;j;1 as a move in
the pebble game. Similarly, whenever M; performs a query g;#g;,1 and node g;; is
not pebbled immediately after this query, we say that M; is unpebbling node g;1.
All other oracle queries and computations by M; are considered as pauses between
pebble game moves of these two forms. For example, in fig. 3-9, query (e) (the first
occurrence of ¢u#q3 is not considered a move in the pebble game, since it doesn’t
change the set of pebbled nodes as defined by definition 3.

It is obvious that under the above interpretation, all moves must obey the main
pebble game rule, i.e. that the pebbled status of node g; can only change if j = 1 or if
node g;_; is pebbled during the change. The move is a query, and the presence of the
query means the node g;_; is pebbled both before and after the query, by definition
3, unless 7 = 1; qo is not considered to be a node.

To show that no nodes are initially pebbled is a only a little bit harder. Suppose
that some node g; was pebbled in M;’s initial configuration. Then a shorter descrip-
tion of x (for sufficiently large n) can be given as (j, A7j, '), where z' is z with g;
spliced out. This description could be processed via simulation of M; to produce x in
the same way as in lemma 2, except that this time, the starting configuration C'; can
be produced directly from the known values of M; and n, and need not be explicitly
included in the description. Of course the description system s needs to be able to
process descriptions of this form. Then the incompressibility of z in s shows that the
assumption that g; is initially pebbled is inconsistent.

Thus M; exactly obeys all the rules of the Bennett pebble game. Now, Li and
Vitényi have shown [86] that any strategy for the pebble game that eventually pebbles
a node at or beyond node 2* must at some time have at least k£ + 1 nodes pebbled at
once. So let us simply choose n large enough so that t(n) > 2F for some k > 4(c; + 1),
and also so that S > ¢;. Then at times 7 when p is maximum, M;’s space usage is
|C-| > 1pS > 1kS > (¢; +1)S > ¢ + 6;S.

The above discussion establishes that machine M; takes more than space ¢; + ¢;S
if it correctly decides membership in L(A) for inputs of length n; = n and takes only
time ¢; + ¢; T, so long as the oracle A is consistent with the definition above. Since
machine M;’s behavior on the input 0™ only depends on the values of the successor
function f(b) for bit-strings b up to a certain size (call it z), we are free to extend the
oracle definition to similarly foil machine M;,; by picking n;,1 so that S(n;; 1) > 2. If
one continues the oracle definition process in this fashion for further M;’s ad infinitum,
then for the resulting oracle, it will be the case that for any M; and constant c; in
the entire infinite enumeration, the machine will either get the wrong answer or take

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 81

more than time ¢; + ¢; T or space ¢; + ¢;S on input 0. Thus, no reversible machine
can actually decide L(A) in time O(T) and space O(S), and so L(A4) ¢ RST(S, T).

Note that this entire oracle construction, as described, is computable. If we are
given procedures for computing S(n) and T(n), we can write an effective procedure
that, given any finite oracle query, returns A’s response to the query. The details of
the oracle construction algorithm follow directly from the above definition of A, but
would be too tedious to present here.

This concludes our proof of theorem 3.1.

O

Note that in the above proof, we used the fact that the number of pebbles required
to get to the final node grows larger than any constant as n increases. But the actual
rate of growth can be used as well, to give us an interesting lower bound.

Corollary 1. Lower bound on space for linear-time relativizable reversible simula-
tion of irreversible machines. For all ST-constructible S, T and computable S’ such
that S < T < 25 and §' < Slog(T/S), there exists a computable, self-reversible oracle
A such that RST(S, T)4 # ST(S, T)“.

Proof. Essentially the same as for Theorem 1 part (b), but with S’ in place of
S in appropriate places. In the last part of the proof, M; is shown to take more than
¢; + ¢;S' space by using Lemma 2 together with the fact that p > |lg|T/S]| pebbles
are required to reach the final node. (I

This result implies that any general linear-time simulation of irreversible machines
by reversible ones that is relativizable with respect to all self-reversible oracles must
take space Q(Slog(T/S)).

The most space-efficient linear-time reversible simulation technique that is cur-
rently known was provided by Bennett ([19], p. 770), and analyzed by Levine and
Sherman [84] to take space O(S(T/S)!/(0-581&(T/S)) Bennett’s simulation can be easily
seen to work with all self-reversible oracles, so it gives a relativizable upper bound
on space. There is a gap between it and our lower bound, due to the fact that the
space-optimal pebble-game strategy referred to in our proof takes more than linear
time in the number of nodes. A lower bound on the number of pebbles used by linear
time pebble game strategies would allow us to expand our lower bound on space,
hopefully to converge with the existing upper bound.

3.4.3 Non-relativized separation

We now explain how the same type of proof can be applied to show a non-relativized
separation of RST(S, T) and ST(S, T) in certain cases, when inputs are accessed in
a specialized way that is similar to an oracle query.

82 CHAPTER 3. REVERSIBLE COMPUTING THEORY

Input framework. Machine inputs will be provided in the form of a random-access
read-only memory I, which may consist of 2° b-bit words for any integer b > 0. The
length of this input may be considered to be n(b) = b2° bits; let b(n) be the inverse of
this function. The machine will have a special input access tape which is unbounded
in one direction, initially empty, and is used for reversibly accessing the input ROM
via the following special operations.

Get input size. If the input access tape is empty before this operation, after the
operation it will contain b written as a binary string. If the tape contains b before
the operation, afterwards it will be empty. In all other circumstances, the query is a
no-op.

Access input word. If the input access tape contains a binary string a of length
b before the operation, afterwards it will contain the pair (a, I[a]) where I[a] is a
length-b binary string giving the contents of the input word located at address a. If
the tape contains this pair before the operation, afterwards it will contain just a.
Otherwise, nothing happens.

Theorem 2. Non-relativized separation of reversible and irreversible spacetime.
For models using the above input framework, and for S(n) = b(n) and any ST-
constructible T(n) such that S < T < 2%, RST(S, T) # ST(S, T).

Proof. (Sketch following proof of theorem 1.) For input I of length n = b2°,
define result bit 7(I) to be the first bit in the b-bit string given by

LT/8]

Let language L = {I : 7(I) = 1}. L € ST because an irreversible machine can simply
follow the chain of | T/S] pointers from address 0°, using space O(S) (not counting
the input) and time O(T).

Assume there is a reversible machine M that decides L in ¢+ ¢S space and ¢+ c¢T
time for some c. Let b be sufficiently large for the proof below to work. Let s be a
certain description system to be defined. Let t = |T/S]. Let = be a length-tS string
incompressible in s. Let wy ...w; = x where all w; are size b. Restrict s so that all
the words w; must be different from each other and from 0°. Let I be an input of
length n = b2° such that I[0°] = wy, and I[w;] = w;; for 1 <4 < ¢, and I[a] = 0°
for every other address a. M must at some time access [[w;_;]| because otherwise we
could change the first bit of I[w; 1] to be the opposite of whatever M’s answer is, and
M would give the wrong answer. Assign a set of pebbled nodes to each configuration
of M’s execution on input [like in the oracle proof, except that this time, input
access operations take the place of oracle calls. Show, as in lemma 2, that the size of
a configuration is at least %pS where p is the number of pebbled nodes, by defining
s to allow descriptions that are interpreted by simulating M and reading pebbled

3.4. REVERSIBLE VS. IRREVERSIBLE SPACE-TIME COMPLEXITY 83

nodes from the input access tape. As before, the machine must therefore take space
Q(Slog(T/S)) which for sufficiently large n contradicts our assumption that the space
is bounded by ¢+ ¢S. Thus L ¢ RST(S,T). &

Corollary 2. Non-relativized lower bound on space for linear-time reversible simu-
lations. For S = b(n), computable S’ < Slog(T/S), and ST-constructible T(n) such
that S < T < 25 RST(S,T) # ST(S, T).

Proof. As in corollary 1 but with theorem 2. [J

Such a T exists because b can be found in space and time O(logb) using the “get
input size” operation, after which T = b2, for example, can be found in space O(log b)
and time O(log”b). Thus, any reversible machine that simulates irreversible ones
without slowdown takes Q(Slog(T/S)) space in some cases.

3.4.4 Decompression algorithm

It is probably not obvious to the reader that the algorithm that we briefly mentioned
in the proof of lemma 2 in §3.4.2 can be made to work properly. In this section we
give the complete algorithm and explain why it works.

The algorithm, shown in figure 3-10, essentially just simulates M;’s operation in
direction D starting from configuration C;, and reads the identifiers of the pebbled
nodes off of M;’s simulated oracle tape. The bulk of the algorithm is in the details
showing how to simulate all oracle queries correctly.

There is a small subtlety in the fact that this algorithm has, built into it, some
of the values of f that are defined by the oracle. Yet the algorithm is part of the
definition of our description system s;, which is used to pick x and define the f(g;)
values. This would be a circularity that might prevent the oracle from being well-
defined, if not for the fact that the portion of f that is built in, that is, f(b) for
|b| < 'S, is disjoint from the portion of f that depends on this algorithm, that is, only
values of f(b) for |b| > S(n;). Thus there is no circularity.

The f() values for the entire infinite oracle can be enumerated by enumerating
all values of 7 in sequence, and for each one, computing the appropriate values of M;
and c¢;, and choosing an n; that satisfies all the explicit and implicit lower bounds
on n that we mentioned above. Then, n; is used in the above algorithm to allow
us to define s; and choose the appropriate z, which determines f(b) for all b where
|b| = S(n;); these values of f can then be added to the table for use in the algorithm
later when running on higher values of .

We now explain why the simulation carried out by the (oracle-less) decompression
algorithm imitates the real oracle-calling program exactly. When we come to an oracle
query operation where the queried bit-string(s) do not appear in our ¢[j] array and
do not have a matching Ar;, then we know the bit-string(s) must not correspond to a
real node in ¢, ... , ¢, because if they did, then either they were not pebbled due to

84 CHAPTER 3. REVERSIBLE COMPUTING THEORY

queries in direction D, in which case they would have been in the description d and
would have been present in the initial ¢ array, or else the first query that involved
them must have been before the current one (or else some A7; would match), in which
case they would have been added to the ¢ array earlier.

Moreover, when we get to a single query g¢;, we know we can look up g;;1 to answer
the query, because it must already have been stored. Either g;,; was not pebbled in
direction D in which case it was stored originally, or it was pebbled in direction D
in which case the first query involving it must have been before this one, since this
query is not of the type that would have caused the node to be pebbled in direction
D. In either case we will already have a value in array entry g[j + 1].

Given any description d derived from the execution history of a real M;, the sim-
ulation will eventually find values for all nodes, since either they were given initially
or they are found eventually as we simulate. Thus the algorithm prints z, as required
for the proof of lemma 2.

3.4.5 Can this proof be carried farther?

Given the work above, an obviously desirable next step would be to show that
RST(S,T) # ST(S, T) for a larger class of space-time functions S, T in a reason-
able serial model of computation without an oracle. A similar problem of following a
chain of nodes may still be useful for this. But when there is no oracle, and when the
required time is larger than the input length T > n, there is no opportunity to specify
an incompressible chain of nodes to follow. Instead, the function f mapping nodes
to their successors must be provided by some actual computation that is specified
by the relatively short input. It will be helpful if f is non-invertible or is a one-way
invertible function, whose inverse might be hard to compute. But the function will
still have some structure, and so it may be very difficult to prove that there are no
shortcuts that might allow the result of repeated applications of the function to be
computed reversibly using little time or space.

3.5 Summary of reversible complexity results
for traditional models

Let us summarize the above results on complexity in reversible machines. In sec. 3.2.2,
p- 51, we described a variety of measures of the cost or “complexity” of a computation.
Now we will summarize how reversible and irreversible models compare under different
measures of computational complexity.

Let M denote an arbitrary (not necessarily reversible) abstract model of compu-
tation such as a Turing machine or RAM machine, in which primitive operations may

3.5. SUMMARY OF REVERSIBLE COMPLEXITY 85

Given description d as described in the text,
Let ¢[1]...q[t] be a table of node values,
initially all NULL.
Initialize all ¢[j]’s not pebbled in direction D,
as specified by description d.
Simulate M; in direction D from configuration C;,
as follows:
To simulate a single operation of M;:
If it’s a non-query operation, simulate it
straightforwardly, and proceed.
Otherwise, it’s an oracle query.
Examine oracle tape.
If it’s not of the form b or b#c for
bit-strings b, ¢, |b| = |¢|, do nothing.
If |b| <'S, look up f(b) in a finite table,
and set the oracle tape appropriately.
If |b| > S, do nothing for this operation.
If the query is of the form b, then
If current time matches some A7,
set ¢[j] = b.
If b = ¢[j] for some j < t,
set oracle tape to b#q[j + 1],
else go ahead to the next operation.
If query is of the form b#c, then
For each A7; matching current time,
set g[j] to b or ¢ depending on tag k;.
If b = q[j] and ¢ = ¢[j + 1] for some j,
set oracle tape to b,
else do nothing for this operation.
Increment time counter.
Repeat until time exceeds largest Ar;.
Print all ¢[j]’s.

Figure 3-10: Algorithm to print the incompressible chain of nodes z via simulation
of the reversible machine M,;.

86 CHAPTER 3. REVERSIBLE COMPUTING THEORY

be reversible or irreversible, and unbounded memory is available. Let R(M) denote
the corresponding reversible model of computation, like M but with all primitive
operations constrained to be perfectly logically reversible, and with an extra stack
for history information made available to each active processing element from the
original machine.

Number of ticks. Under the cost measure T (number of “ticks” of some syn-
chronous, computational “clock”), a reversible model R(M) is exactly as efficient as
an arbitrary model M. This follows from the Landauer-Lecerf-Bennett ideas as we
discussed in §3.3.3, p. 58, which apply to parallel models as well as to serial models.

Memory requirement. Under the cost measure S (maximum memory used at any
time during the computation), R(M) is exactly as efficient as M. This follows from
the Lange-McKenzie-Tapp technique we discussed in §3.3.5.3, p. 62. However, if the
model includes an input stream that can only flow one way and whose length is not
included in S, then Pin’s proof [111] applies, and the reversible model is structly
less space-efficient, because there are regular languages that cannot be recognized by
constant-space reversible machines.

Memory and number of ops. Under the cost measure (S, T), without additional
assumptions, we only know that R(M) is no more efficient than M. However, given
one-way external inputs, reversible models are less efficient by our argument in the
previous paragraph. Moreover, this is also true given a certain oracle, or given
random-access external inputs, by our two new theorems from §3.4. We conjec-
ture that reversible models are less (S, T)-efficient even given only internal inputs and
simple primitive operations, but this has not yet been proven.

Memory times num. ops. The statements of the previous paragraph also apply to
the cost measure ST (the product of the traditional space and time). Therefore, prob-
ably reversible models are in general strictly less space-time efficient, in traditional
complexity-theory terms.

Note that all the above comparisons deal in measures of complexity that are character-
ized in abstract, computational terms, such as the number of operations performed,
rather than as real physical quantities; and the models of computation that were
compared were all idealized abstract models, rather than models of machines as they
could be physically implemented.

Normally in computer science it is often assumed that such abstract models are a
good enough approximation to reality so that correct conclusions can be inferred from
the resulting abstract theory. In our case, the theory would seem to indicate that
machines that are constrained to be reversible are strictly inferior to unconstrained
machines, including machines that are completely irreversible.

3.5. SUMMARY OF REVERSIBLE COMPLEXITY 87

However, in chapter 5 we will show that this conclusion is actually in error, in
the sense that if one uses more physically realistic models of machines and of costs,
machines that are completely irreversible are instead strictly inferior to machines
that are allowed to be reversible to some degree, and are sometimes even inferior to
fully reversible machines. We anticipate that this inferiority will make itself felt in a
variety of of present-day and projected future computing technologies.

Therefore, for the purpose of deciding between reversible and irreversible modes
of computation in the real world, we see that traditional computer science and tradi-
tional complexity theory are inadequate; they give the opposite of the correct answer
in some cases!

This underscores our overall point, which is that computer scientists must not
become mired in the traditional models of computation, but instead should strive
to keep their models up-to-date with all the new factors that become important as
technology improves.

We believe that computer science, as a field, should look ahead and try to antici-
pate the ultimate physical limits of computer technology, and begin studying models
that are accurate enough to give the right answer even in that limit.

In that spirit, chapter 4 further motivates our quest for an ultimate physical
model of computation, and outlines some plausible candidates that should remain
valid at least through the foreseeable future. Chapter 5 shows why the ultimate
model will need to permit an arbitrarily high (if not perfect) level of logical and
physical reversibility. Then, Part II of this thesis will present a variety of engineering
designs and analyses demonstrating that reversible computation is quite feasible, and
most of the concepts from ordinary irreversible computation still apply.

88

CHAPTER 3. REVERSIBLE COMPUTING THEORY

