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Who We Are
• Dr. Michael Frank

– MIT Ph.D. stud. & postdoc, 1996-97 & 1999.
• Area exam studies on quantum computing.

• DARPA-funded reversible computing research.

– 1999-now: Head of Reversible & Quantum
Computing group at UF’s CISE dept.
• http://www.cise.ufl.edu/research/revcomp
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Who We Are, cont.
• DoRon Motter

– Undergrad in UF CISE dept., 1997-2000.
• Coursework in CS + quantum mechanics.

• Sr. highest honors thesis w. Dr. Frank, 2000.

– Now a Masters student at U. Mich.
• Advisor: Igor Markov, U. Mich.

• DARPA-funded project on quantum logic systhesis

A Grab-Bag of Topics
• Stable, reversible numerical simulations of

wave mechanics.

• Visualization techniques for quantum algs.

• Linear-space classical simulations of
quantum systems.

• Complexity models, classical + quantum
parallelism.

• Models for systems engineering of scalable
quantum computers.
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Simulating Wave Mechanics
• The basic problem situation:

– Given:
• A (possibly complex) initial wavefunction

                   in an N-dimensional position basis, and

• a (possibly complex and time-varying) potential
energy function          ,

• a time t after (or before) t0,

– Compute:
•

• Many applications...
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The Problem with the Problem
• An efficient technique (when possible):

– Convert V to a Hamiltonian H.

– Find the energy eigenstates of H.

– Project Ψ onto eigenstate basis.

– Multiply each component by           .

– Project back onto position basis.

• Problem:
– It may be intractable to find the eigenstates!

• We resort to numerical methods...
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History of Reversible Schrödinger Sim.

• Technique discovered by Ed Fredkin and
Willi am Barton in 1975.

• Subsequently proved by Feynman to
conserve a certain probabilit y measure.

• 1-D simulations in C/Xlib written by Frank
at MIT in 1996.

• 1 & 2-D sims in Java, and proof of stabilit y
by Motter at UF in 2000.

Overview
• Discrete update technique discovered in

1975 by Fredkin and Barton

• Known to give good simulations empirically

• Shown here that there is a mathematical
basis for this

• Sample simulations shown in HSV
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Introduction
• Example of a reversible sequence of

statements
– A ← A + f(B)

– B ← B + f(A)

• At each step either (A or B) changes

• This change depends only on the other
variable (held constant)

Introduction
• Undoing the computation

– A ← A + f(B)

– B ← B + f(A)

• Exactly reversible
– Even after n steps of computation

– Even if f cannot be computed exactly

– Even if A, B are approximate values (finite precision)
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Introduction
• Undoing the computation

– A ← A + f(B)

– B ← B + f(A)

– B ← B - f(A)

– A ← A - f(B)

• Exactly reversible
– Even after n steps of computation

– Even if f cannot be computed exactly

– Even if A, B are approximate values (finite precision)

Introduction
• Centered approximation schemes
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Introduction
• Centered approximation schemes

• Schrödinger Equation (1D)
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Discrete Schrödinger Update
• Substituting centered approximation

formulas gives

where
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Discrete Schrödinger Update
• Substituting centered approximation

formulas gives

where

• “Central-time, central-space” scheme
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Discrete Schrödinger Update
• Substituting centered approximation

formulas gives
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Reversibility
• Real component at time n+1 depends on imaginary

component at time n

• Similar to:

– A = A + f(B)

– B = B + f(A)

Reversibility
• Real component at time n+1 depends on imaginary

component at time n

• Similar to:

– A = A + f(B)

– B = B + f(A)

• Let                    , then
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Reversibilit y
• Real component at time n+1 depends on imaginary

component at time n

• Similar to:

– A = A + f(B)

– B = B + f(A)

• Let                    , then

Convergence and Stabili ty

• Outline of the proof depends on Parseval’s
relation
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Simulation of QC Algorithms
• Visualization:

– Project states onto 2-D/3-D spaces
• Corresponding to register pairs/triplets.

– Use HSV color space to represent amplitudes.

– Visualize gate ops with continuous color change.

• Simulation Efficiency:
– Optimizations:

• Track only states having non-zero amplitude.

– Linear-space simulations of n-qubit systems.

Visualization Technique

• Illustration: 3 stages of Shor’s algorithm
• Register value → spatial position
• Phase angle → pixel color hue.
• Magnitude → pixel color saturation.
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Linear-space quantum simulation
• A popular myth:

– “Simulating an n-qubit (or n-particle) quantum
system takes eΘ(n) space (as well as time).”

• The usual justification:
– It takes eΘ(n) numbers even to represent a single

Θ(n)-dimensional state vector, in general.

• The hole in that argument:
– Can simulate the statistical behavior of a

quantum system w/o ever storing a state vector.

The Basic Idea
• Inspiration:

– Feynman’s path integral formulation of QED.

– Gives the ampli tude of a given final
configuration by accumulating ampli tude over
all paths from initial to final configurations.

– Each path consists of only a single Θ(n)-
coordinate configuration at each time, not a full
wavefunction over the configuration space.

– Can enumerate all paths, while only ever
representing one path at a time.
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Simulating Quantum Computations

• Given:
– An n-qubit quantum computation, expressed as a

sequence of 1-qubit gates and CNOT gates.

– An initial state s0 which is just a basis state in
the classical bitwise basis, e.g. |00000〉.

• Goal:
– Generate a final basis state with the same

distribution as the quantum computer.

U1

U3
U4

U2

Matrix Representation
• Consider each gate as rank-2n unitary matrix:

– Each CNOT application is a 0-1 (permutation)
matrix - a classical reversible bit-operation.

– With appropriate row ordering, each Ui gate
application is block-diagonal, w. each 2×2 block
equal to Ui.

– We need never represent these full matrices!

– The 1 or 2 nonzero entries in a given row can be
located & computed immediately given the row
id (bit string) and Ui.
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The Linear-Space Algorithm
• Generate a random coin c∈[0,1].  Let p←0.

• For each final n-bit string y at time t,
– Compute its amplitude Ψ(y) as follows:

• Generate its possible 1 or 2 predecessor strings
 x1 (and maybe x2) given the gate-op preceding t.

• For each predecessor, compute its amplitude at time
t−1 recursively using this same algorithm,

– unless t=0, in which case Ψ=1 if |x〉=s0, 0 otherwise.

• Add predecessor amplitudes, weighted by entries.

–  Accumlate Pr[y]: p ← p +||Ψ(y)||2

– Output y and halt if p>c.


