

Modeling Quantum Physics \& Computation
 Michael Frank (UF) \& DoRon Motter (U.Mich.)

September 16, 2001

Who We Are

- Dr. Michael Frank
- MIT Ph.D. stud. \& postdoc, 1996-97 \& 1999.
- Area exam studies on quantum computing.
- DARPA-funded reversible computing research.

- 1999-now: Head of Reversible \& Quantum Computing group at UF's CISE dept.
- http://www.cise.ufl.edu/research/revcomp

Who We Are, cont.

- DoRon Motter
- Undergrad in UF CISE dept., 1997-2000.
- Coursework in CS + quantum mechanics.
- Sr. highest honors thesis w. Dr. Frank, 2000.
- Now a Masters student at U. Mich.
- Advisor: Igor Markov, U. Mich.
- DARPA-funded project on quantum logic systhesis

A Grab-Bag of Topics

- Stable, reversible numerical simulations of wave mechanics.
- Visualization techniques for quantum algs.
- Linear-space classical simulations of quantum systems.
- Complexity models, classical + quantum parallelism.
- Models for systems engineering of scalable quantum computers.

Simulating Wave Mechanics

- The basic problem situation:
- Given:
- A (possibly complex) initial wavefunction $\Psi_{0}=\Psi\left(\bar{x}, t_{0}\right)$ in an N-dimensional position basis, and
- a (possibly complex and time-varying) potential energy function $V(\vec{x}, t)$,
- a time t after (or before) t_{0},
- Compute:

$$
\text { - } \Psi(\vec{x}, t)
$$

- Many applications...

The Problem with the Problem

- An efficient technique (when possible):
- Convert V to a Hamiltonian H.
- Find the energy eigenstates of H.
- Project Ψ onto eigenstate basis.
- Multiply each component by $e^{i H\left(t-t_{0}\right)}$.
- Project back onto position basis.
- Problem:
- It may be intractable to find the eigenstates!
- We resort to numerical methods...

History of Reversible Schrödinger Sim.

- Technique discovered by Ed Fredkin and William Barton in 1975.
- Subsequently proved by Feynman to conserve a certain probability measure.
- 1-D simulations in C/Xlib written by Frank at MIT in 1996.
- 1 \& 2-D sims in Java, and proof of stability by Motter at UF in 2000.

Overview

- Discrete update technique discovered in 1975 by Fredkin and Barton
- Known to give good simulations empirically
- Shown here that there is a mathematical basis for this
- Sample simulations shown in HSV

Introduction

- Example of a reversible sequence of statements
$-\mathrm{A} \leftarrow \mathrm{A}+\mathrm{f}(\mathrm{B})$
$-\mathrm{B} \leftarrow \mathrm{B}+\mathrm{f}(\mathrm{A})$
- At each step either (A or B) changes
- This change depends only on the other variable (held constant)

Introduction

- Undoing the computation
$-\mathrm{A} \leftarrow \mathrm{A}+\mathrm{f}(\mathrm{B})$
$-\mathrm{B} \leftarrow \mathrm{B}+\mathrm{f}(\mathrm{A})$
- Exactly reversible
- Even after n steps of computation
- Even if f cannot be computed exactly
- Even if A, B are approximate values (finite precision)

Introduction

- Undoing the computation
$-\mathrm{A} \leftarrow \mathrm{A}+\mathrm{f}(\mathrm{B})$
$-\mathrm{B} \leftarrow \mathrm{B}+\mathrm{f}(\mathrm{A})$
$-\mathrm{B} \leftarrow \mathrm{B}-\mathrm{f}(\mathrm{A})$
$-\mathrm{A} \leftarrow \mathrm{A}-\mathrm{f}(\mathrm{B})$
- Exactly reversible
- Even after n steps of computation
- Even if f cannot be computed exactly
- Even if A, B are approximate values (finite precision)

UNIVERSITY
OFMICHIGA

Introduction

- Centered approximation schemes

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 \Delta x} \\
f^{\prime \prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)}{2(\Delta x)^{2}}
\end{aligned}
$$

Introduction

- Centered approximation schemes

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 \Delta x} \\
f^{\prime \prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i+1}\right)-2 f\left(x_{i}\right)+f\left(x_{i-1}\right)}{2(\Delta x)^{2}}
\end{aligned}
$$

- Schrödinger Equation (1D)

$$
i \hbar \frac{d}{d t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x, t)+V(x, t) \psi(x, t)
$$

Discrete Schrödinger Update

- Substituting centered approximation formulas gives

$$
\begin{aligned}
i \hbar \frac{\psi_{m}^{n+1}-\psi_{m}^{n-1}}{2 k} & \approx-\frac{\hbar^{2}}{2 m} \frac{\psi_{m+1}^{n}-2 \psi_{m}^{n}+\psi_{m-1}^{n}}{2 h^{2}}+V_{m}^{n} \psi_{m}^{n} \\
\text { wnere } \psi_{m}^{n} & \equiv \psi\left(x_{m}, t_{n}\right)
\end{aligned}
$$

Discrete Schrödinger Update

- Substituting centered approximation formulas gives
$i \hbar \frac{\psi_{m}^{n+1}-\psi_{m}^{n-1}}{2 k} \approx-\frac{\hbar^{2}}{2 m} \frac{\psi_{m+1}^{n}-2 \psi_{m}^{n}+\psi_{m-1}^{n}}{2 h^{2}}+V_{m}^{n} \psi_{m}^{n}$
wnere $\psi_{m}^{n} \equiv \psi\left(x_{m}, t_{n}\right)$ "
- "Central-tume, cenural-space" scheme

Discrete Schrödinger Update

- Substituting centered approximation formulas gives

$$
\begin{aligned}
& i \hbar \frac{\psi_{m}^{n+1}-\psi_{m}^{n-1}}{2 k} \approx-\frac{\hbar^{2}}{2 m} \frac{\psi_{m+1}^{n}-2 \psi_{m}^{n}+\psi_{m-1}^{n}}{2 h^{2}}+V_{m}^{n} \psi_{m}^{n} \\
& \text { wnere } \psi_{m}^{n} \equiv \psi\left(x_{m}, t_{n}\right)
\end{aligned}
$$

- "Central-ınue, cenural-space" scheme

$$
\psi_{m}^{n+1}=\psi_{m}^{n-1}+i\left[\alpha \frac{k}{h^{2}}\left(\psi_{m+1}^{n}-2 \psi_{m}^{n}+\psi_{m-1}^{n}\right)+\beta k V_{m}^{n} \psi_{m}^{n}\right]
$$

Reversibility

- Real component at time $\mathrm{n}+1$ depends on imaginary component at time n
- Similar to:
$-\mathrm{A}=\mathrm{A}+\mathrm{f}(\mathrm{B})$
$-\mathrm{B}=\mathrm{B}+\mathrm{f}(\mathrm{A})$

Reversibility

- Real component at time $\mathrm{n}+1$ depends on imaginary component at time n
- Similar to:
$-\mathrm{A}=\mathrm{A}+\mathrm{f}(\mathrm{B})$
$-\mathrm{B}=\mathrm{B}+\mathrm{f}(\mathrm{A})$
- Let . then

$$
\psi=X+i \dot{Y}
$$

Reversibility

- Real component at time $n+1$ depends on imaginary component at time n
- Similar to:
$-\mathrm{A}=\mathrm{A}+\mathrm{f}(\mathrm{B})$
$-\mathrm{B}=\mathrm{B}+\mathrm{f}(\mathrm{A})$
- Let $\psi=X+i Y$, then

$$
\begin{aligned}
X_{m}^{n+1} & =X_{m}^{n-1}-\left[\alpha \frac{k}{h^{2}}\left(Y_{m+1}^{n}-2 Y_{m}^{n}+Y_{m-1}^{n}\right)+\beta k V_{m}^{n} Y_{m}^{n}\right] \\
Y_{m}^{n+1} & =Y_{m}^{n-1}+\left[\alpha \frac{k}{h^{2}}\left(X_{m+1}^{n}-2 X_{m}^{n}+X_{m-1}^{n}\right)+\beta k V_{m}^{n} X_{m}^{n}\right]
\end{aligned}
$$

Convergence and Stability

- Outline of the proof depends on Parseval's relation

Simulation of QC Algorithms

- Visualization:
- Project states onto 2-D/3-D spaces
- Corresponding to register pairs/triplets.
- Use HSV color space to represent amplitudes.
- Visualize gate ops with continuous color change.
- Simulation Efficiency:
- Optimizations:
- Track only states having non-zero amplitude.
- Linear-space simulations of n-qubit systems.

Visualization Technique

Linear-space quantum simulation

- A popular myth:
- 'Simulating an n-qubit (or n-particle) quantum system takes $e^{\Theta(n)}$ space (as well as time)."
- The usual justification:
- It takes $e^{\Theta(n)}$ numbers even to represent a single $\Theta(n)$-dimensional state vector, in general.
- The hole in that argument:
- Can simulate the statistical behavior of a quantum system w/o ever storing a state vector.

The Basic Idea

- Inspiration:
- Feynman's path integral formulation of QED.
- Gives the amplitude of a given final configuration by accumulating amplitude over all paths from initial to final configurations.
- Each path consists of only a single $\Theta(n)-$ coordinate configuration at each time, not a full wavefunction over the configuration space.
- Can enumerate all paths, while only ever representing one path at a time.

Simulating Quantum Computations

- Given:
- An n-qubit quantum computation, expressed as a sequence of 1 -qubit gates and CNOT gates.

- An initial state s_{0} which is just a basis state in the classical bitwise basis, e.g. $|00000\rangle$.
- Goal:
- Generate a final basis state with the same distribution as the quantum computer.

Matrix Representation

- Consider each gate as rank- 2^{n} unitary matrix:
- Each CNOT application is a $0-1$ (permutation) matrix - a classical reversible bit-operation.
- With appropriate row ordering, each U_{i} gate application is block-diagonal, w. each 2×2 block equal to U_{i}.
- We need never represent these full matrices!
- The 1 or 2 nonzero entries in a given row can be located \& computed immediately given the row id (bit string) and U_{i}.

The Linear-Space Algorithm

- Generate a random coin $c \in[0,1]$. Let $p \leftarrow 0$.
- For each final n-bit string y at time t,
- Compute its amplitude $\Psi(y)$ as follows:
- Generate its possible 1 or 2 predecessor strings x_{1} (and maybe x_{2}) given the gate-op preceding t.
- For each predecessor, compute its amplitude at time $t-1$ recursively using this same algorithm,
- unless $t=0$, in which case $\Psi=1$ if $|\mathrm{x}\rangle=s_{0}, 0$ otherwise.
- Add predecessor amplitudes, weighted by entries.
- Accumlate $\operatorname{Pr}[y]: p \leftarrow p+\|\Psi(y)\|^{2}$
- Output y and halt if $p>c$.

