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Abstract

« Adiabatic techniques are absolutely required if we waketp
improving digital poweiperformance beyond the next decade or so.
— Due to fundamental limits on the energy dissipationoafventical logic.
 Truly adiabatiqlasymptotically nosdissipative) logic must be
driven by quastrapezoidal (flatopped) poweclock waveforms.
— And these must be generated by a H@(guality) resonant component.
 Fortunately, presesday MEMS resonators can achieve very high
Q factors, and fairly high (MH&GGHz or so) frequencies.
— They are beginning to be used commercially today in Rkcapipns.
 Our group is building custom MEMS resonators for driving
adiabatic logic, in an integrated CMOS/MEMS process.
— The resonators are designed to have the right chastictetodo the job.
» We describe some prototype resonator designs, and their arnpo
figures of merit (and demerit) that need to be optimized.
— And we also discuss our specific design strategies foigdckm.
* Our simulations irCoventorware& Cadence suggest we might

obtain ~1& powerperformance boosts vs. standard CMOS.
— Predictions will be validated with a test chip to tapeJuly26.
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Moore’s Law— Devices per IC
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Trend of Minimum Transistor Switching Energy

Based on ITRS '97-03 roadr‘naps‘
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The Minimum Energy Cost of Oblivious Bit Erasure
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Reliability Bound on Bit Energy

« To reliably store (latch) a bit of data with less
than 1 error irN repetitions requires that:
— In the equilibrium microstate distribution, when
latching, the number of accessible microstates
interpreted as theorrectstored bit value should b

times the number leading to timzorrectbit value.

» [0 There needs to beE 2 k;T In N energy difference
betweerstates having correct and incorrect bit values, at
time of latching, in a device (neequil) at temperaturé.

— This follows directly from the FerrDirac distribution!

« If and whenan energy of this same magnitude later gets
dissipated by the device, this would lead to an
characteristic entropy increase A5=log N = kg In N.

— And free energy loss ¢§T,,,In N, if environment is at,,,,

A Fairly Conventional “Optimistic”
Technology Scenario for CMOS

» Suppose device lengths are cut in half every 3 years|..
— From 90 nm today down to 22 nm node in 2010 (then stop].
— Node capacitances, gate delays also decrease accordingly
» “Technology boosters” such as higldielectrics &
novel FET structured~{nFET, surroundgate,etc.)
keep leakage power manageable, for a little while
— However, note the absolute minimum redrsubthreshold
slope forFETswill remain 60 mV/decade!=((kT/q) log 10
» Assume this point is also reached by around 2007.
» Voltages then reach a minimum of ~0.5V in 2007.
— Can'tgo lower while keeping on/off ratio above®lével!
* A minimum level chosen so as to keep leakage manageable
* Now, consider what all this implies about future chip

performance, given a 100 W maximum power level..|
— Let max raw performance = 100 W /@2 gate energy)




Not much life left for standard CMOS. .|

CMOS Raw Performance - "Optimistic" Scenario
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Even if the leakage problem were solved, the ~KIDmit for
reliable switching is only another factor of 70 beyond ploist!

Reversible Computing

A reversible digital logic operation is:

— Any operation that performs an invertible (etosone)
transformation of the device’s local digital state.
Landauer'sprinciple only limits the energy dissipation of
ordinaryirreversible (manyto-one) logic operations.

— Reversible logic operations can dissipate much lesggner
* Since they can be implemented in a thermodynamicalbrsédeway.

In 1973, Charles Bennett (IBM Research) showed how
any desired computation can in fact be performed using
only reversible operations (with basically no bit erasure
— This opened up the possibility of a vastly more en&fljgient
alternative paradigm for digital computation.

After 30 years of (sporadic) research, this idea idljina
approaching the realm of practidgadplementability..

— Making it happen is the goal of tRevCompproject at UF.
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Adiabatic Circuits

* Reversible logic can be implemented today using fairly
ordinary voltagecoded CMOS VLSI circuits.
— With a few changes to the loggate/circuit architecture.

» We avoid dissipating most of the circuit node energy
when switching, by transferring charges in a nearly

adiabatic (lit. “without flow of heat”) fashion.

— l.e, asymptotically thermodynamically reversible.
* In the limit, as various lovievel technology parameters are scaled.

» There are many designs for purported “adiabatic” circuits
in the literature, but most of them contain fatal #aand
are not truly adiabatic.

— Many past designers are unaware of (or accidentallydfad
meet) all the requirements for true thermodynamiensiility.

Conventional Logic is lrreversible
Even a simple NOT gate, as traditionally implemented...

» Logic gate behavior (upon receiving new input):
— Performs mamyo-one transformation of local state!

— 0 required to dissipatz kT, by Landauer principle
— Incurs2C\V? energy dissipation in 2 out of 4 cases.

e —gd

Transformation of local state:

Example:

_ Just before After
Static CMOS Inverter: transition: transition:
in out in out
in out @
0 D0 D

T D




Conventionaks. Adiabatic Charging

For charging a capacitive lo&ithrough a voltage swing

« Conventional charging: < ldeal adiabatic charging:

— Constant voltage source — Constant current source
Q=CvVv Q=CV
— W
Vv —c R L C
— Energy dissipated: — Energy dissipated:
—1py2 R R
Ediss_écv Edisszlth:—Qt :CVZTC

Note: Adiabatic beats conventional by advantage fastert/2RC.

Adiabatic Switching witt MOSFETs

» Use a voltage ramp to approximate_TV_g
an ideal current sources: 2

. Switchconditionally, W~ C Ql>CV —
if MOSFET gate voltage
Vg > V+V; during ramp. L

» Can discharge the load later using a similar ran
— Either through the same path, or a different path.

VZR_C

Exact formula:
Eyee = SlL+sle™* -1)cv?
givenspeed fraction

t<RC = E,_ - iCV? s:=RCht

Athas '96, Tzartzanis ‘98

t> RC = By »

p.




Requirements for True Adiabatic Logid
(See paper by Frank from MLPD ’'03)
Avoid passing current through diodes.
— Crossing the “diode drop” leads to irreducible dissipation.

Follow a “dry switching” discipline (in the relay lingo):

— Never turn on a transistor whdgg # 0. Important
— Never turnoff a transistor wheh,g # 0. «——— but often
» Together these rules imply: neglected

— The logic design must be logically reversible
» There is no way to erase information under thesas'rule

— Transitions must be driven by a quasipezoidal waveform
* It must be generated resonantly, with h@@gh

Of course, leakage power must also be kept managea

— Because of this, the optimal design point wat necessarily

use the smallest devices that can ever be manufactured!
 Since the smallest devices may have insoluble prabieith lealage.

Dle.

A Simple Reversible CMOS Latch

» Uses a single standard CM@ansmission gate (T-gate).
» Sequence of operation:
(0) input level initially tied to latch ‘contents’ (output
(1) input changes gradually output follows closely;
(2) latch closes, charge is stored dynamically (nodésfipa
(3) afterwards, the input signal can be removed.

: / . \ Before | Input I nput

(\ ; ! input: | arrived:| removed:
P N in out| in out| in out
J_/\ .? ..... ?.""\"".E ......... 0 O<.>O 0_- 0 0

LB%, — 1 1— 0 1
/ ..... -

- : * Later, we can reversibly
T ; “unlatch” the data with
I A — uniatent the data wih |

(C:)) (1) (:2) (53) sequence of steps.




2LAL: 2-level Adiabatic Logic

A pipelined fully-adiabatic logic invented at UF (Spri2d@00),

implementable using ordinary CMOS transistors. T
N

I L
- . g 2
» Use simplified Tgate symbol:_é_ =
- Basic buffer element: ~ ® (implicit |
— crosscoupled TFgates: 0 dual-rail  Tp
« need 8 transistors to encoding
buffer 1 duakrail signal @ out everywhere)
Animation:

N . Tick # []

* Only 4 timing signalsy, ; are 0123.. =

needed. Only 4 ticks per cycle:
— @ rises during tick$=i (mod 4) oN_/ ]
— @ falls during tickst=i+2 (mod 4) ¢ N__/]

2LAL Cycle of Operation

Tick #0 Tick #1 . Tick #2 Tick #3
@ -1
in-1 in- OEi
—_—
171} I ¢ -0

b

in=0 ]
\%rﬂi_

-1

@®-1

out-0




A Schematic Notation for 2LAL

@ » _If_ @© . ) )
A-|£|-B = A-—‘P*N’—B = A-—L:l_l—-s ;AB = ;
() g/t P ® 4B
m._|>_. = IZD—AM_‘; = Z A+B
© @ A=0 ~A=0
(d) A=1
HEEEs- 5T
2LAL Shift Register Structure
. . Animation:
 1-tick delay per logic stage: B
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 Logic pulse timing,and signal propagation:
0123 .. }0123...

iny |
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* One way to do inverting functions in pipelined

More Complex Logic Functions
Nonr-inverting multtinput Boolean functions:

(pO AND gate OR gate
Ay (plus delayedy)
By Ay
—_
(ALB),
(AB),

logic is to use a quardil logic encoding:
— To invert, just A=0 A=1

swap therails! AL__/ \

« Zerotransistor A N/

“‘inverters.” |

>

&

Energy diss./operation —

o

Minimum Losses w. Leakage

t — F?eak — Seak
opt 1 w
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Ramp rise time ¢, —
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UF CONFIDENTIAL — PATENT PENDING

MEMS Resonator Concept

A potential approach for efficiently
driving adiabatic logic transitions

The Power Supply Problem

 In adiabatics, the factor of reduction in energy
dissipated per switching event is limited to (at most)
the Q factor of the clock/power supply.

Qoverall - (Qlogic_l + qupply_l)_l

» Electronic resonator designs typically have Qw
factors, due to considerations such as:
— Energy overhead of switching a clamping power MOSFET

to limit the voltage swing of a sinusoidaC oscillator.

— Low coll count, substrate coupling in integrated inductors.
— Unfavorable scaling of induct@® with frequency.

* Our proposed solution:
— Use electromechanical resonators instead!

12



MEMS (& NEMS) Resonators

 State of the art of technology demonstrated in lab:

— Frequencies up to the 100s of MHz, even GHz
— Q’s >10,000 in vacuum, several thousand even in air!

* An important emerging technology being explored

for use in RF filters
etc., in
communications
SoCseg. for
cellphones

UF CONFIDENTIAL — PATENT PENDING

Original Concept

» Imagine a set of charged plates whose horizontal positi
oscillates between two sets of interdigitated fixedgsla
— Structure forms a variable capacitor and voltage dividgér the load.

» Capacitance changes substantially only when crossing border.
— Produces nearly flabpped (quasirapezoidal) output waveforms.
— The two output signals have oppogpteses (2 of thed's in 2LAL)

R —— . — .
Logic pre———— Logic
load #1 — ——————— load #2
Vl . —— vV,
RL e—— . e—— 2 RL
— C —— L e———
L : X : CL

\Q | \_ﬂ_/

13



UF CONFIDENTIAL — PATENT PENDING
MEMS Resonant Power Supply for

Ultra-Low-Power Adiabatic Circuits
A.k.a. The “AdiaMEMS” Project

Part of CISE's Reversible & Quantum Computing group

— Collah with Huikai Xie (MEMS, ECE dept}———
Goal: Demonstrate ordemsf-magnitude improvement in
powerperformance efficiency of digital CMOS circuits.

— Based on reversible logic in adiabatic circuits pozd by

high-quality custonmicroelectromechanicaésonators.

Funding: $40K seed grant froilBRC’sCrossDisciplinary
Semiconductor Research (CSR) Program

MEMS Designer:

lggﬁ ?L} Maojiao He

VLSI designer: Krishna Natarajan

UF CONFIDENTIAL — PATENT PENDING
Key Characteristics of Resonator

Goal: Produce a neadeal trapezoidal output voltage
waveform resonantly, with hig®.

To be optimized with logicResonant frequendy

Key resonator figures of merit:

— Effective quality factor:Q.« = E;....{Eics

— Area efficiencyE, = E,, /A

Key resonator figures of demerit:

— Maximum relative transition slope:
Snax = (AC/dt), ./ (AC, /AL

— Fractlonal capacnance variation:

dC
- ACvar/ AC f‘ } ACmax

tra ne

AC

var
tran
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UF CONFIDENTIAL — PATENT PENDING

First MEMS Technology Tried

It is a thinfilm technology
— We have since moved to a meltiyer, bulk single

crystal process which can be expected to do bettef.

Integrated CMOS/MEMS devices will

eventually be available in this process.

— However our initial design was dudie
* CMOS side was not mature yet in this process

Minimum etched structure width:= 0.5um
Minimum etched gap sizeé:= 0.1um

MEMS process donated by Robert Bosch corp.

UF CONFIDENTIAL — PATENT PENDING
Some Early Resonator Designs

By Ph.D. student Maojiao He, under supervision of Huikai Xie
Close-up of sense fingers

Another
finger
design

15
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UF CONFIDENTIAL — PATENT PENDING
Sensor Design

d,=d W, =4
I L,=41 X =8L
L | W fW W, =W,_+4d
W, =W

L§I|l T[] = | s = W, v 2d (Early
W \ L,> d(L,=20d) design

d, w. thin
fingers)

4C, =8x10 *F
L4, |

. Capacitancel0™°F

sensor

124

104
84
6
24
o

1

Simulated Output Waveformn

. at

16



Dissipation in Resonator

Ways to minimize some major sources of dissipation:
* Air damping:

— Vacuum packaging, small size, or optimize airflow
Clamping losses to the substrate:

— Locate support at a nodal point of vibration mode

— Use impedancenismatched supports to reflect energy back
Thermoelastidissipation (heat flow resulting from
nonuniformstrain):

— Small size

— Use stiff, high thermal conductivity materiasi,(diamond?)
— Utilize modes with uniform compression/expansion
Surface loss mechanisms:

— Avoid layered structures (thifilm interfaces) at surfaces
Intrinsic material losses:

— Prefer singlecrystal materials

Status / Plans for Near Future

Improved resonator designs afforded by a suitably

modified postCMOS process flow are being developed,|

— | will briefly review some aspects of the new process.
A small prototype resonator design was taped out in a

postCMOS MEMS process (TSMC .35)
— Parts were just received last week; are presently bé&chga

Process donation has been obtained from MOSIS for

fabricating a integrated CMOS/MEMS test chip (~$20K).

— Resonator driving a simple 2LAL shift register or adder Ipipe
— Tapeout for this chip is scheduled for July 26.

Test the various parts separately, & together.
— Characterize power dissipation using senstaierimetry
techniques.

17



Post CMO-MEMS Proces:
(DRIE)

CMOS-region  metal-3
(a) Backside etch metal-2
STS: 12-sec etching Single-crystal Si metal-1
(sCS) membrane. .\ oxice
12 W platen power; poly-Si

8-sec passivation
85-sccm C,Fy, 12 mT, 600 W
coil power, 0 platen power.

(b Oxideetcn [ IR o [

PlasmaTherm-790:
22.5-sccm CHF;, 16-sccm
0O,, 100 W, 125 mT for 125
minutes and then 100 mT for
10 minutes.

Post CMO-MEMS Proces:
e (DRIE)

@
(b) R R . B

(c) Deep Si etch

1
] [ [ cmos rayer
<

STS: same as Step (a).

Thin-film
Flat structure /’ structure

(@) st undercur RN NN = BN |

SCS layer
STS: 130-sccm SFy,
13-sccm O,, 23 mTS, (20~100um)

600 W coil power, T
and 0 platen power.

H. Xie et al, J. MEMS, Vol.11, no.2, 2002

18



Electrical Isolation of Silicon

O Electrically isolated

O Electrically isolated
comb fingers

silicon island

U Using n-well to improve
undercut yield

Al
n-well [ | [ R

+—— Oxide
=

v

=

DRIE CMOS-MEMS Resonators

Serpentine

Front-side
view

/]

~_drive y 4
AccV  Spot Magn~--Det WD F——— 100um

2.00kV 50 300x SE 180

Back-side

view <

150 kHz
[ISpot Magn Det WD b—— 100 pm

5.0 300x SE _18.0

Resonators T Tre—
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UF CONFIDENTIAL — PATENT PENDING

PostTSMC35AdiaMEMS Resonator

Taped out
April ‘04

UF CONFIDENTIAL — PATENT PENDING

CloseUp View, Drive/Sense Combs
- |

20



UF CONFIDENTIAL — PATENT PENDING

Side View, Showindi Undercut

UF CONFIDENTIAL — PATENT PENDING

New Comb Finger Shape
Concepts

For improved waveform shape and
area efficiency

21



UF CONFIDENTIAL — PATENT PENDING

New Comb Finger Shape |

Minimum
thickness

to minimize
undesired
arm-load
capacitance

Maximum
vertical (z)
thickness for
maximum<
overlap
capacitance
per planar
area

nge of Motion

"2Minimum gap size
for maximum overlap
capacitance per-area

Note that the new configuration increases the

magnitude of the capacitance variation while Color
reducing the magnitude of departures from key:
the desired trapezoidal wave shape.

UF CONFIDENTIAL — PATENT PENDING

New Comb Finger Shape Il

Maximum
vertical (z)
thickness for
maximum<
overlap
capacitance
per planar
area

Minimum gap size
for maximum overlap
capacitance per-area

Note that the new configuration increases the

magnitude of the capacitance variation while Color
reducing the magnitude of departures from key:
the desired trapezoidal wave shape.

In addition, the structures are made of silicon

22



UF CONFIDENTIAL — PATENT PENDING

New Comb Finger Shape Il

Note
separation
to reduce
undesired
arm-load
capacitance

High vertical
(2) thickness
for large

ed/loving Plat e of Motiro}
capacitance ]

overlap,
per planar
area JMinimum gap size

for maximum overlap
capacitance per-area

Note that the new configuration increases the
magnitude of the capacitance variation while
reducing the magnitude of departures from
the desired trapezoidal wave shape.

Color
key:

UF CONFIDENTIAL — PATENT PENDING

New Comb Finger Shape IV
- Arm anchored to nodal points of fixed-fixed beam flexures, ‘

located a little ways away, in both directions (for symmetry)

4

Phase 0°electrode ®  pepea  Phase 180°electrode jy
& . e
interdigitated X
C(0) . stucture C(0)
arbitrarily many

00 3600 / times along y axis, Oo 3600
6 all anchored to the 0

same flexure

Or, if we can do the structure on the previous slide, then why not this one too? Or, will there be a problem
etching the intervening silicon out from in between the metal/oxide layers and the bulk substrate?




UF CONFIDENTIAL — PATENT PENDING

New Comb Finger Shape V

P

Requires accurate,

In this design, the plates are attached directly to a supprt variable-depth
arm which extends in the y direction instead of x. This arm .

can be the flexure, or it can be attached to a surrounding backside etch
frame anchored to a flexure. Note that in the initial position, (not presenﬂy
at all points, we only need etch from top and/or bottom, with .

no undercuts. Also, the flexure can be single-crystal Si. avallable)-

UF CONFIDENTIAL — PATENT PENDING

New finger: One Candidate Layout

Coventor

24



UF CONFIDENTIAL — PATENT PENDING
New finger simulation results

o P N W MO O N ®

(=}

O P N W A OO N
T S

(=]

Cadence simulation results

Work by AdiaMEMS project students:
Krishna Natarajan
VenkiteswararAnantharam
(UF ECE Dept., under supervision of

Dr. Frank, CISE/ECE)
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8-stage
circular shift -
register
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Simulation Results from Cadence

Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL

1.E-05

1.E-06

1.E-07

Standard

1.E-08 :: CMOS

1.E-09
1.E-10
1.E-11

1.E-12

Average power dissipation per nFET, W

1.E-13

1.E-14 T T T T T 1
1.E+09 1.E+08 1.E+07 1.E+06 1.E+05 1.E+04 1.E+03

Frequency, Hz

Assumptions & caveats:
*Assumes ideal trapezoidal
power/clock waveform.
* Minimum-sized devices &3\
* .18 um (L) x .24 um (W)
* nFET data is shown
* pFETSs data is very similar
« Various body biases tried

* Higher V;, suppresses leakage

* Room temperature operation.

« Interconnect parasitics have ngt
yet been included.

« Activity factor (transitions per
device-cycle) is 1 for CMOS,
0.5 for 2LAL in this graph.

« Hardware overhead from fully-
adiabatic design style is not
yet reflected

* >2x transistor-tick hardwardg
overhead in known reversible
CMOS design styles

O(log n)-time carryskip adder

] With this structure, we can do @
(8 bit segment shown)  2-bit add in2(n+1) logic levels
— 4(n+1) reversible ticks

d i .

th : 37 carry tick 2 carrytick  _, n+1 clock cycles.
4th carry tick

S AB S AB S AB S AB S AB S AB S AB SAB Hardware
&—C C, GCouCin PG,‘ GCW“:” be—{G / GC,,C.n qu, GCW‘{;” Ovel'h e a.d |S

Il 1 <2xregular

Pms Gls P\s Pms Gls P, Pms G\s P\s Pms Gls P, 1

I oo, 5/ 6 b e ™ YA ripple-carry.
P P

— 17 1l

Prs G Py Pps Gg P
MSs < L

G Gcout C\n
P Py

[ NS
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Adder Schematie High 16 Bits

CloseUp of 4bit Section
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Two Bits

Power (W)

32-bit Adder Simulation Results

32-bit adder power vs.

frequency
1.E-04
1.E-05 1
1.E-06 -
\
.
1E-07 2 .
NN
< -
1.E-08 - > "
"
Fa
W 20X better perf.
= CMOS pwr Z ‘@W‘gﬁn adder
1E-09 — e
Adia. pwr
1E-10 ! : : |
1E+08 LE+07 LE+06 LE+05 LE+04

Add Frequency (Hz)

Energy/Add (J)

32-bit adder energy vs.

frequency
1.E-11 q
1.E-12 |
1.E-13 .
<t
<
%
: L

LE14 5 —4— CMOS energy| “”\\\;L

Adia. enrgy
1.E-15 ! T T 1

1.E+08 1.E+07 1.E+06 1.E+05 1.E+04
Add Frequency (Hz)

(All results normalized to a
throughput level of 1 add/cycle)
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Plenty of Room for Power per device, vs. frequency
Device Improvement

* Recall,irreversibledevice
technology haat most
~3-4 orders of magnitude \
of powerperformance

§
T~
|mprovements remalnlng. §
N

“MC S 1E1L
\ 1E12
\u 1E13

1E14

— And then, the firnkT In 2 R |
limit is encountered. e~
* But, a wide variety of

proposedeversibledevice \\

Power per device

I

technologies have been T .e™ S N
analyzed by physicists. 800 [ various A5 ...
— With theoretical power ke |eversile i
performance up t&0-12 I il L sl NG NG
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A Potential Scaling Scenario for
Reversible Computing Technology

Make same assumptions as previously, except:
» Assumeenergy coefficient (energydiss / freq.)
of reversible technology continues declining at

historical rate of 18/ 3 years, through 2020.

— For adiabatic CMOS;; = CV2RC = CA2R,
 This has been going ag*under constarfield scaling.

— But, requires new devices after CMOS scaling stoj
* However, many candidates are waiting in the wings

Assume number of affordabllayers of active
circuitry per chip (or per packageg., stacked

dies) doubles every 3 years, through 2020.
— Competitive pressures will tend to ensure this will

=4

happen, esp. if deviesize scaling stops, as assume.

S.
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Result of Scenario

APotential Scenario for CMOS vs. Reversible Raw Af  fordable Chip Performance
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e.g. 1 billion devices actively switching al
3.3 GHz, ~7,00@T dissip. per device-op
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Device-ops/second per affordable 100W chip

1.00E+17 + T T T T T T T
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Year

{40 layers, ea. .

Note that by 2020, there could be a factor of 20,000x differeneav

performance per 100W packag&.g(, a 100x overhead factor from reversible

design could be absorbed while still showing a 200x boostriorpeance!)

Conclusions

» Standard CMOS is approaching imminent limits on
raw performance per unit power consumed.
— Due to various lower bounds on the energy dissipated by
conventional irreversible switching.
* Only mostly-reversible logic architectures have the
potential to bypasall of the known energy limits!
— Via migration to an increasingly adiabatic, ballistiode of

operation, and an increasingly reversible logic design.
» With increasingly highQ energy transfers during logic.

* UF's AdiaMEMS project offers key techniques for
nearterm reversible computing in CMOS/MEMS.
— Potentially viable technology for ultlew-power products.

« Digital circuit architectures that are designed in a
mostly-reversible logic style will be thenly ones that
can be easily ported to future ulagh-performance
reversible logiedevice nanotechnologies.
— We need to start paying more attention to these issues!
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AdiaMEMS Project Members Thanks!

Left to
Right:
Venki,
Mike,
Maojiao,
Krishna,
& Huikai
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