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Summary of Talk

* The traditional irreversible digital computing paradigm is rapidly
approaching firm limits on performance per unit power consumed.
— Due to lower bounds on energy dissipated by irreversible switching events.
» The only hope for maintaining power-performance scaling beyond
the near future is to explore the alternative: mostly reversible logic.
— That is, substantially reversible both thermodynamically and logically.
» Highly adiabatic (mostly reversible) logic circuits have been built.
— UF is presently exploring an integrated CMOS/MEMS technology for this.
* Results imply a prospect for near-term applications offering >10x
power-performance boosts at ultra-low power levels, e.g., for DSP.
— With potential for many orders of magnitude further improvement, in various
proposed alternative (but still reversible) technologies on the horizon.
» We invite TI to collaborate with UF & our collaborators on the

development of mostly-reversible digital processor architectures.
— Aimed towards products for ultra-low-power apps in the near term,
— With potential migration to ultra-high-performance products down the road.
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Present Network of Collaborators

— Michael Frank (CISE), Huikai Xie (ECE)

* with assistance from various TEC lab faculty

— Dmitri Averin, A. Semenov (Physics)

— Craig Lent, Peter Kogge

NASA: Theory, spacecraft applications

University of Florida: Adiabatic CMOS/MEMS

SUNY Stony Brook: Reversible supercond. logic

Notre Dame: Reversible quantum-dot logic

— Colin Williams (JPL), others from Ames, Goddard

— Erik Debendictis, others.

Sandia nat’l lab: Zettaflops applications, MEMS
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Microprocessor Power Trends
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Gunther et al., “Managing the Impact of Increasing Microprocessor Power
Consumption,” Intel Technology Journal, 1% quarter 2001.

Landauer’s (1961) Principle: Foreshadowed by
. . von Neumann ‘49
The Minimum Energy Cost of Bit Erasure
Before bit erasure: After bit erasure:
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Increase in entropy: AS =1log 2 =k In 2. Energy dissipated to heat: 7AS = k7 In 2




Reliability Bound on Bit Energy

» To reliably store (latch) a bit of data with less

than 1 error in N repetitions requires that:

— In the equilibrium microstate distribution, when
latching, the number of accessible microstates leading
to the correct stored bit value should be N times the
number leading to the incorrect bit value.

* [0 There should be AE = kT In N energy difference

between storage-cell states having correct and incorrect bit

values, at time of latching, in a device at temperature 7.
— Follows directly from the Boltzmann distribution.

« If and when energy of this magnitude later gets dissipated
by the device, this would lead to an characteristic entropy
increase of AS =log N=/k;InN.

Reliability Bound: Numerical Example

« Example: Reliability factor of N=10°7 (1 error in a 10°

device processor running for ~3 years at 10 GHz)
— Associated entropy:
log 10?7 = kg In 10?7 = 62k = 8.6x10722 J/K
— Heat that must be output to a room-7" (300 K) environment:
k(300 K)In 10?7 =2.6x1071° J (or 260 zJ, or 1.6 eV)
e Sounds small, but...

— If each device dumped this energy at a frequency of 10 GHz,
« the total power dissipated by an entire 10°-device processor is 26 W.
+ Can have at most 4 such processors within a 100 W power budget.

— Maximum performance: 4x102° device-cyles/sec.
* or 4 PFLOPS, if processors do 100,000 device-ops per FLOP




Reliability Bound: Physical Example

 Store a bit by raising an energy barrier to isolate

electrons on a nano-island (w. discrete spectrum).

— Prob. of trapping an extra electron in a state at AE is
1/(1+eAEAT) = e AEAT - (Fermi-Dirac distribution.)

Fermi level

y Fermi sea /\/
Semi-

occupied

Large reference node 1
Fermi level }AE
— | A
k Fermi seaJ

Nano-node

What Exactly Does this Imply?

 The reliability bound indeed lower-bounds the
energy difference between correct and incorrect

bit states at the time that a bit is first stored,

— And, the “simple, dumb” way to erase a bit is to just
remove the potential barrier between states, which
returns the stored energy to the heat bath...

 But, this is not the only possible way to erase a
bit. The kT In N energy need not be dissipated.

— More cleverly designed erasure mechanisms can
reduce the energy dissipation to approach the von
Neumann-Landauer bound of 47 In 2 arbitrarily
closely, without sacrificing reliability!




Cheap Bit Erasure

Relatively high occupancy

Step #0: Initial state: We have a stored logical
bit that may well be in the high-energy state.

Step #1: Apply a bias force to the storage cell to lower the state’s
energy level to match the reference node’s Fermi level.

Bias
well
down-
wards

Cheap Bit Erasure, continued...

Step #2: Lower the potential energy barrier; state lowerl Entropy

oicupancy equilibrates w. Fermi surface (50%). barrier iniﬁ%asi
in this step:

- ne] g AS=kyIn2
(if bit was
non-random)

Step #3: Gradually up-bias the cell energy; this isothermally
compresses the electron gas out of the cell. Tunneling

Gradually
bias cell
upwards

Step #4: Now re-raise the potential energy barrier to
isolate the now almost-certainly-unoccupied cell.

Total entropy generated: AS — k In 2




Reversible Computing

A reversible digital logic operation is:
— Any operation that performs an invertible (one-to-one)
transformation of the device’s local digital state.
Landauer’s principle only limits the energy dissipation of

ordinary irreversible (many-to-one) logic operations.

— Reversible logic operations can dissipate much less energy,
* Since they can be implemented in a thermodynamically reversible way.

In 1973, Charles Bennett (IBM Research) showed how
any desired computation can in fact be performed using
only reversible operations (with no bit erasure).
— This opened up the possibility of a vastly more energy-efficient
alternative paradigm for digital computation.
After 30 years of sporadic research, this idea is finally

approaching the realm of practical implementability...
— Making it happen is the goal of the RevComp project at UF.

Adiabatic Circuits

Reversible logic can be implemented using fairly ordinary
voltage-coded CMOS VLSI circuits.

— With a few changes to the logic-gate/circuit architecture.

We avoid dissipating most of the circuit node energy
when switching, by transferring charges in a nearly
adiabatic (lit. “without flow of heat™) fashion.

— Le., asymptotically thermodynamically reversible.

There are many designs for purported “adiabatic™ circuits

in the literature, but most of them contain fatal flaws.
— Many past designers are unaware of (or accidentally failed to
meet) all the requirements for true thermodynamic reversibility.




Conventional Logic is Irreversible
Even a simple NOT gate, as traditionally implemented...
» Logic gate behavior (upon receiving new input):
— Performs many-to-one transformation of local state!

— [ required to dissipate = k7, by Landauer principle
— Incurs 2CV? energy dissipation in 2 out of 4 cases.

Transformation of local state:

Just before After
Static CMOS Inverter: transition: transition.

in out in out
in‘:out @

Example:

A 0O—1 0>

T D7

Conventional vs. Adiabatic Charging

For charging a capacitive load C through a voltage swing V'

» Conventional charging:  « Ideal adiabatic charging:

— Constant voltage source — Constant current source
o=Crv o=Ccrv
(— e
4 =—=c @ & =c
— Energy dissipated: — Energy dissipated:
— 2 .
Ediss_%CV Ediss=]2Rt=¥=CV2$

Note: Adiabatic beats conventional by advantage factor 4 = #/2RC.




Adiabatic Switching with MOSFETSs

 Use a voltage ramp to approximate 1
an ideal current source:

» Switch conditionally, { /) — —

if MOSFET gate voltage
V> VAV during ramp. —

 Can discharge the load later using a similar ramp.
— Either through the same path, or a different path.

t> RC = E;, — Ccr? E Exact formula;
! Gy E Sll +s(e_”S —I)JCV2
given speed fraction
t<< RC = Ediss - %CVZ s :=RC/t

Athas 96, Tzartzanis ‘98

Requirements for True Adiabatic Logic

Avoid passing current through diodes.
— Crossing the “diode drop” leads to irreducible dissipation.
Follow a “dry switching” discipline (in the relay lingo):
— Never turn on a transistor when Vg # 0. Important
— Never turn off a transistor when /g # 0. «——— but often

Together these rules imply: neglected!

— The logic design must be logically reversible
* There is no way to erase information under these rules!

— Transitions must be driven by a quasi-trapezoidal waveform
* It must be generated resonantly, with high Q
Leakage power must also be kept manageable.
— Because of this, the optimal design point will not necessarily

use the smallest devices that can ever be manufactured!
* The smallest devices may have insoluble problems with leakage.




A Simple Reversible CMOS Latch

» Uses a single standard CMOS transmission gate (T-gate).

» Sequence of operation:
(0) input level initially matches latch ‘contents’ (output);
(1) input changes gradually — output follows closely;
(2) latch closes, charge is stored dynamically (node floats);
(3) input signal can now be removed

g / ! \ Before | Input Input

input: | arrived:| removed.:

P — 7 in out|in out | in out
J_/\ o / ......... 0 0ap0 0—f 0 0
1n out - ' M 11—t 0 1

dheveeebereeNereseeefersenenns
_‘i’_ — \ j « Later, we can reversibly
; / ! ! “unlatch” the data with

: ; an exactly time-reversed
0 (1) 2 3) sequence of steps.

2LAL: 2-level Adiabatic Logic

A pipelined fully-adiabatic logic invented at UF (Spring 2000),
implementable using ordinary CMOS transistors.

T N
: L
* Use simplified T-gate symbol: _é_ = —4
 Basic buffer element: =~ & (implicit |

— cross-coupled T-gates: = dual-rail Ty

* need 8 transistors to encoding
buffer 1 dual-rail signal @ out everywhere)
o ) Tick #

* Only 4 timing signals @, ; are 0123..

needed. Only 4 ticks per cycle: ((E?

— (@ rises during ticks /=i (mod 4) ,
— @ falls during ticks /=i+2 (mod 4) ¢,




2LAL Cycle of Operation

Tick #0 Tick #2

in-1

2LAL Shift Register Structure

Animation:

* 1-tick delay per logic stage: B

: mm% mm%

2lal.swf




More Complex Logic Functions

« Non-inverting multi-input Boolean functions:

® AND gate OR gate
4y (plus delayed A) ®
B 0
—
(40B),
(4B),

 For inverting functions, we must use a quad-rail
logic encoding: 41=0 A=1

—Toinvert, just AL~ \

swap the rails! 4L\~

||
||

* Zero-transistor 7, | /" N\
N4

“inverters.” Ayl

A Graphical Notation for 2LAL




Reversible and/or Adiabatic VLSI Chips
Designed @ MIT, 1996-1999

By Frank and other then-students in the MIT Reversible Computing group,
under CS/Al lab members Tom Knight and Norm Margolus.
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Adiabatic vs. Conventional Power vs. Frequency

LE+01 ‘ \ \ |
\\\ Input parameters for an example scenario:
LE+00 * Device on/off ratio (max./leakage current) of 103,
\\ * Adiabatic hardware overhead factor of 4.
N\ 1LEOI A \ \ \
% Results of analysis:
& 1E02 + Maximum performance gain is ~1,000 at
4 \ a power level of ~7x1078 of full throttle.
,3 1.E-03 7 \ \
§ ~ Conventional
S 1E-04 7 ~- Adiabatic
0 -~ Adia./Conv. Time t
2 1E05 \
= \ \ — Best-case power
& 1506 \ \ Min. Relative Time
1.E-07 X L LN
ra e, By \
1.E-08 ; ‘ ; ; ; s

1.E+01 1.E+00 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09
Slowdown Factor RC /t

Adiabatic Performance Boost

Approx. performance gain factor \/ (Pg,max _p j
. . . . Lfull L1k

of adiabatics, given power level is: g = N Oy °

Where: 2P~ P

= Py = Eq qufmax= “Full throttle™ switching power per logic gate,
* E,, = CV? switching energy per logic gate
* foax = ‘Full throttle” switching frequency 1/RC of gates
— Py nax = Maximum allowed power dissipation per gate, imposed by
constraints on application’s power and/or cooling system
— 0,4, = Hardware overhead factor of adiabatic logic design
— P, = Leakage power dissipation per gate in given technology

This is maximized when P =Py (20,4, — 1), In

g,max
which case we have: 1
— where Ryt = lon/losy =Pra/Prc - @00 = —

This is >1 when 4V 0,40 (O, =1
16 0,4i,(0,4,=1) < R,,os Of transistor technology

a on/of

adia

Ron/off




Example Ultra-Low-Power Scenario

Technology scenario:
— ITRS hp65 (65 nm half-pitch) technology node (expect ~2007).

Application scenario:
— 1Mgate processor chip (e.g. TI’s C6000 line of GHz DSPs)

— Requirement for < 100 p

processor power dissipation

Leakage per NAND gate in hp65: ~13 pW.

— [ chip would dissipate ~13 uW even at zero frequency!

Irreversibly switching NAND gate’s output takes 250 al.

— 1 million active gates would dissipate 250 pJ per clock cycle
* 87 uW switching power constraint — max. freq. ~350 kHz!

— Max. NAND transition rate = 23 GHz, slowdown ~66,000 x

Adiabatic solution: Using overhead factor 4x

— Run clock at 35 MHz instead of 350 kHz (100x faster!)
* But note this is still 660 times slower than max transition frequency.
— [ each switching op dissipates only ~1/660% the CV? energy
 Or, ~1/160%" even after the 4x logic overhead is included

— Leakage power: ~50 uW, switching power: ~50 uW.

Maximum switching frequency, Hertz

Adiabatics vs. Voltage Scaling

Voltage-scaled and adiabatic frequency vs. power

10°

(The true effective adiabatic PR
curve may be shifted — /
right somewhat, due to

hardware overheads.)

10 10° 10° 10
Power dissipation per device, Watts

* Technology:

* TSMC 0.18um

(a few years old)
* Optimum benefit
obtained at:

* 6.3 pW/device

* 50% speedup!
* Adiabatic:

* 12 MHz @ 1.8V
» Conventional:

* 250 kHz @ .24V

* Maximum speedup
can be increased
arbitrarily by using
higher-threshold
devices (and/or low
operating
temperatures).




Cadence simulation results

Work by AdiaMEMS project students:
Krishna Natarajan

Venkiteswaran Anantharam
(UF ECE Dept.)

Cadence parameter windows




Cadence schematic for the 4-stage
2L AL circular reversible shift register

* Propagates a dual-rail voltage pulse circularly through 4 2LAL delay/buffer stages.
Pulse propagates a full 4 stages in 1 clock cycle.

* Truly, fully adiabatic operation. All transitions take place over a full % cycle.

* Totally symmetric, reversible design:
Direction of pulse propagation would be reversed if clock phases were inverted.

Output Waveform at 700 kHz




2LAL

8-stage
circular shift

register

Pulse propagation in 8-stage circuit




Average power dissipation per nFET, W
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Simulation Results from Cadence

Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL

Assumptions & caveats:
*Assumes ideal trapezoidal

power/clock waveform.
* Minimum-sized devices, 2Ax3A
* .18 umx.24 pm
* nFET data is shown

* pFETs data is very similar
* Various body biases tried

* Higher ¥}, suppresses leakage
* Room temperature operation.
* Interconnect parasitics have not

yet been included.

* Activity factor (transitions per
device-cycle) is 1 for CMOS,
0.5 for 2LAL in this graph.

» Hardware overhead from fully-
adiabatic design style is not
yet reflected

* >4x transistor-tick hardware

1.E+09 1.E+08 1.E+07 1.E+06 1.E+05 1.E+04 1.E+03 overhead in known reversible

Frequency, Hz

CMOS design styles

Example energy & power transients

Power/Energy Curves — Operating Frequency of ~700KkHz at a Voltage of 1.6V

~450 zJ burned per transition in {f ETs

~1 aJ burned per transition in pFETs

(~2x greater than nFETs)

Average power:
700 fW/pFET

Average power:
300 fW/nFET

(700 kHz, 1.6V)

(Only 2.8 eV, ~100 k,T7)

pFETs burn at a rate of
~5-10 pW during their %>
of transition (~1/8 cycle)

/nFETs burn at a rate of
~1-5 pW during their %5
of each transition




Power in 8-stage circuit (incl. leakage)

Pow Vo MHz

. S, V=16V, Vy
<4 aJ/trar151t10n through pFET

(~1.4 pW/pFET 70 pW/pFET
avg. power) | peak power
L.—.

~1.5 aJ/transition through nFET

\\.

(~.55 pW/nFET
avg. power)

45 pWFET™
peak power

1.8u

Voltage scaled statlc CMOS behav10r

cy: only 10 kHZ'
65 al/pFET
transition —~——,

(.63 pW/pFET | ™ 300 pW/pFET
¢ avg. power) ; peak power

65 a]mFET
transition T
} Another 80 aJ/nFET/cycle
from leakage!

(1.5 pW/nFET 500 pW/nFET
avg. power) peak power

time { = }




Plenty Of ROOm for Power per device, vs. frequency
Device Improvement N

LN

Ny
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A Fairly Conventional “Optimistic”
Technology Scenario for CMOS

» Suppose device lengths are cut in half every 3 years...
— From 90 nm today down to 22 nm node in 2010 (then stop).
— Node capacitances, gate delays also decrease accordingly...
» “Technology boosters” such as high-k dielectrics &
novel FET structures (FInFET, surround-gate, etc.)
keep leakage power manageable, for a little while...

— However, note the absolute minimum room-7" subthreshold
slope for FETs will remain 60 mV/decade! (= (k7/¢) log 10)

+ Assume this point is also reached by around 2007.

» Voltages then reach a minimum of ~0.5V in 2007.

— Can’t go lower while keeping on/off ratio above 103 level!
* A minimum level chosen so as to keep leakage manageable

« Now, consider what all this implies about future chip

performance, given a 100 W maximum power level...
— Let max raw performance = 100 W / (*2CV? gate energy)




Not much life left for standard CMOS....

CMOS Raw Performance - "Optimistic" Scenario
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Device-ops/second per 100W chip

e.g., 108 transistor
chip @ 2 GHz
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Even if the leakage problem were solved, the ~100 AT limit for
reliable switching is only another factor of 70 beyond this point.

A Potential Scaling Scenario for
Reversible Computing Technology

Make same assumptions as previously, except:

» Assume energy coefficient (energy diss. / freq.)
of reversible technology continues declining at

historical rate of 16x / 3 years, through 2020.
— For adiabatic CMOS, ¢ = CV2RC = C?V?R.

* This has been going as ~/* under constant-field scaling.

— But, requires new devices after CMOS scaling stops.
* However, many candidates are waiting in the wings...

» Assume number of affordable /ayers of active
circuitry per chip (or per package, e.g., stacked
dies) doubles every 3 years, through 2020.

— Competitive pressures will tend to ensure this will
happen, esp. if device-size scaling stops, as assumed.




Result of Scenario

APotential Scenario for CMOS vs. Reversible Raw Affordable Chip Performance

40 layers, ea. w|
8 billion devicep,
freq. 180 GHz,
1.008+22 0.4 kT dissipati
per device-op
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—e— CMOS
—=— Reversible

Microsoft Excel
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Year

Note that by 2020, there could be a factor of 20,000% difference in raw
performance per 100W package. (E.g., a 100x overhead factor from
reversible design could be absorbed while still showing a 200x boost.)

UF CONFIDENTIAL - PATENT PENDING

MEMS Resonator Concept

A potential approach for efficiently
driving adiabatic logic transitions




The Power Supply Problem

* In adiabatics, the factor of reduction in energy
dissipated per switching event is limited to (at most)
the Q factor of the clock/power supply.

Qoverall - (gzlogici1 + gzsupplyil)il

« Electronic resonator designs typically have low Q

factors, due to considerations such as:
— Energy overhead of switching a clamping power MOSFET
to limit the voltage swing of a sinusoidal LC oscillator.
— Low coil count, substrate coupling in integrated inductors.
— Unfavorable scaling of inductor Q with frequency.
* Our proposed solution:
— Use electromechanical resonators instead!

MEMS (& NEMS) Resonators

« State of the art of technology demonstrated in lab:
— Frequencies up to the 100s of MHz, even GHz
— (0’s >10,000 in vacuum, several thousand even in air!

« An important emerging technology being explored

for use in RF filters, U. Mich., poly, /=156 MHz, 0=9,400

etc., In )
.. G
communications g
SoCs, e.g. for . (@/’\
cellphones. > P




UF CONFIDENTIAL - PATENT PENDING

Original Concept

» Imagine a set of charged plates whose horizontal position
oscillates between two sets of interdigitated fixed plates.
— Structure forms a variable capacitor and voltage divider with the load.
» Capacitance changes substantially only when crossing border.

— Produces nearly flat-topped (quasi-trapezoidal) output waveforms.
— The two output signals have opposite phases (2 of the 4 ¢’s in 2LAL)

— N — .
Logic T — Logic
load #1 ———— — load #2
Vl — N — V
RL — N — 2 RL
— C — N —
X : CL

A = g

UF CONFIDENTIAL - PATENT PENDING
MEMS Resonant Power Supply for

Ultra-Low-Power Adiabatic Circuits
A k.a. The “AdiaMEMS” Project

» Part of CISE’s Reversible & Quantum Computing group
— Collab. with Huikai Xie (MEMS, ECE dept.)
* Goal: Demonstrate orders-of-magnitude improvement in
power-performance efficiency of digital CMOS circuits.
— Based on reversible logic in adiabatic circuits powered by
high-quality custom microelectromechanical resonators.
+ Funding: $40K seed grant from SRC’s Cross-Disciplinary
Semiconductor Research (CSR) Program

L
Mf il
B & B o

VLSI designer: Krishna Natarajan

MEMS Designer:
Maojiao He




UF CONFIDENTIAL - PATENT PENDING
Key Characteristics of Resonator

Goal: Produce a near-ideal trapezoidal output voltage
waveform resonantly, with high Q.

To be optimized with logic: Resonant frequency f.

» Key resonator figures of merit:

— Effective quality factor: Q4= E,.,./E giss
— Area efficiency: E, = E,, J/A.

» Key resonator figures of demerit:
— Maximum relative transition slope
de (dC/dt)llldX / (AC
— Fractional capac1tance variation

/ ACH]&X il'(tj v } AC

tr ms

tra ns

UF CONFIDENTIAL - PATENT PENDING

First MEMS Technology Tried

 MEMS process donated by Robert Bosch corp.

« It is a thin-film technology
— Though a multi-layer, bulk single-crystal process
can be expected to do better.

* Integrated CMOS/MEMS devices will

eventually be available in this process.

— However our initial design was dual-die
* CMOS side was not mature yet in this process

* Minimum etched structure width: A = 0.5 um
* Minimum etched gap size: d = 0.1 um




UF CONFIDENTIAL - PATENT PENDH.\IG
Some Early Resonator Designs
By Ph.D. student Maojiao He, under supervision of Huikai Xie

Close-up of sense fingers
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Analysis of initial MEMS design
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Dissipation in Resonator

Ways to minimize some major sources of dissipation:
* Air damping:
— Vacuum packaging, small size, or optimize airflow
* Clamping losses to the substrate:
— Locate support at a nodal point of vibration mode
— Use impedance-mismatched supports to reflect energy back
» Thermoelastic dissipation (heat flow resulting from
nonuniform strain):
— Small size
— Use stiff, high thermal conductivity materials (Si, diamond?)
— Utilize modes with uniform compression/expansion
* Surface loss mechanisms:
— Avoid layered structures (thin-film interfaces) at surfaces
* Intrinsic material losses:
— Prefer single-crystal materials

Status / Plans for Near Future

A small prototype resonator design was taped out in a
post-CMOS MEMS process (TSMC .35)
— Will be tested this summer.
Improved resonator designs afforded by a suitably
modified post-CMOS process flow are being developed.
— I will briefly review some aspects.
Process donation has been obtained from MOSIS for
fabricating a integrated CMOS/MEMS test chip (~$20k).

— Resonator driving a simple 2LAL shift register or adder pipeline
— Tape-out scheduled for July 26.

Test the various parts separately, & together.
— Characterize power dissipation using sensitive calorimetry
techniques.




CMOS-MEMS Process
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Why DRIE CMOS-MEMS?

Thin-film micromachining technology
v On-chip electronics integration
v Multiple axis integration

v’ Size limitation due to residual stress

= ADI, Bosch, Carnegie Mellon, Samsung, Our approach:

Sandia, UC-Berkeley DRIE CMOS-MEMS
process
Bulk micromachining technology v On-chip electronics

v
v’ Large mass Large mass

v No integrated interface circuitry

v Wafer-to-wafer bonding, two-side
alignment

= Bosch, Draper, JPL, Murata , Samsung

Why CMOS-MEMS?

v “Smart” on-chip CMOS circuitry
v" Multi-vendor accessibility

v Scalability

v Compact size

v More functions

v" Low cost

— MEMS structures can be made
* Before CMOS processes (“pre-CMOS”)
* In-between CMOS processes (“intermediate-CMOS™)
* After CMOS processes (“post-CMOS”)




CMOS-MEMS Processes

MEMS Vendor Contami- | Temperature
planarity accessibility nation budget
Pre-CMOS | Best Limited Yes No Sandia
National
Lab
Intermediate- | Good Very Yes Yes Analog
CMOS limited Devices,
Post-CMOS | Varies Good No Yes Berkeley
CMU
UF
ETH
Sandia National Laboratories iMEMS
CMOS Device Area Micromechanical Device Area

fo
|

f |

el
=all}

Py 2

www.sandia.gov

EEFIFITS PETEOS
Fad Hetal 1
- - HTL
il M Fieldoude
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arsanic-doped epitasial layer WiHde / Tdld Paky -

= Pre-etched trench to house MEMS structures

= CMP to planarize the wafer for regular CMOS processing
= Wet etch to release MEMS structures

= Need a dedicated production line




Analog Devices, Inc. BIMEMS

= Form transistors on bare wafers first

= Then deposit and anneal MEMS
structural materials

= No CMP needed

= Only one interconnect metal layer

= Wet etch to release MEMS structures
= Need a dedicated production line

—

NPN NMOS Sensor Area

Sensor Poly

Thox

Emitter
Base NSD

Courtesy of Mr. John Geen
of Analog Devices, Inc.

Post CMOS-MEMS Process (thin-film)

e ionure! v'No lithography needed
et W > v'Integrated CMOS circuitry

SR == v'Low parasitic capacitance
to substrate

v'High wiring flexibility

G. Fedder et al., Sensors & Actuators

A, V.57, 10.2, 1996 v'Curling can be matched

SSSE =22 = Curling is still an issue
= Size limitation
= Temperature performance

= No bottom electrode for vertical
capacitive sensing

Curl matching frame




Post CMOS-MEMS Process
(DRIE)

CMOS-region — metal-3
metal-2

(a) Backside etch
metal-1

1S3T051 12'SeSCFetC1*g”9 o Single-crystal Si
-sccm SFg, 13-sccm O,

23 mT, 600 W coil power, (SCS) membrane
12 W platen power;

8-sec passivation

85-sccm C,Fg, 12 mT, 600 W

coil power, 0 platen power.

oxide

poly-Si

(b) Oxide etch

PlasmaTherm-790:
22.5-sccm CHF;, 16-sccm
O,, 100 W, 125 mT for 125
minutes and then 100 mT for
10 minutes.

Post CMOS-MEMS Process
(DRIE)

(b)

CMOS layer

(c) Deep Si etch T
STS: same as Step (a).
Thin-film
Flat structure structure
(d) Si undercut = 4
SCS layer
STS: 130-sccm SF,,
13-sccm O,, 23 st, j(rzo"’lool‘lm)

600 W coil power,
and 0 platen power.

H. Xie et al, J. MEMS, Vol.11, no.2, 2002




Electrical Isolation of Silicon

O Electrically isolated U Electrically isolated
silicon island comb fingers

U Using n-well to improve
undercut yield

n-well [ ] [ ]
- v ¥ Oxide
=) et =)

DRIE CMOS-MEMS Resonators

Front-side Serpentine
view / spring Proof

Back-side
view L8

150 kHz

100 pm

Resonators
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Post-TSMC35 AdiaMEMS Resonator

Taped out
April ‘04

Drive
comb

:

Sense
comb
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Close-Up View, Drive/Sense Combs




UF CONFIDENTIAL - PATENT PENDING

Side View, Showing Si Undercut

Long-Term Projections

For future computational cost-
efficiency improvements potentially
available via reversible computing




The Future of Reversible Computing

« What if we model how the hardware algorithm
overheads for reversible computing scale?
— Worst case: Increases with roughly Q'

 Can reversible computing become practical for
general-purpose, high-performance computing?
— And not just for ‘niche’ ultra-low-power apps?

« What happens if present technological trends
continue until fundamental limits are reached?
— And, what happens after that?

» We performed an analysis that addresses these
questions...

Technological Trend Assumptions
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Fixed Technology Assumptions

Total cost of manufacture: US$1,000.00
— User will pay this for a high-performance desktop CPU.

Expected lifetime of hardware: 3 years

— After which obsolescence sets in due to price drops.
Total power limit: 100 Watts

— Practical limit for a laptop much quieter than a hair-dryer!
Power flux limit: 100 Watts per square centimeter

— Approximate limit of conduction/air-cooling capabilities

Standby entropy generation rate: 1,000 nat/s/device
— Arbitrarily chosen, but achievable e.g. by today’s DRAM:s.

Cost-Efficiency Benefits
of Reversible Computing
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Next Steps

An industry partner in chip design is needed, to help
convince funding agencies (NASA, DOD) that real
products can result from this work.

— We offer TI the chance to be our partner in developing these

techniques towards DSP products.

This partner would also join us in preparing various
upcoming proposals for gov’t funding.

— E.g., NASA “Code T” program (external call)
We would like to work closely with a team of 1-3
serious architects who are willing to learn and try out a
rather nontraditional logic framework.

— Keeping the long-term benefits in mind.
Work on the MEMS-based power supply is crucial,

and ongoing...
— Sandia lab may help us with this.

Conclusions

Standard CMOS is approaching imminent power-
performance limits.
— Due to various lower bounds on the energy dissipated by
conventional irreversible switching.
Only a mostly-reversible logic architecture has the

potential to bypass all of the known energy limits!
— Through migration to an increasingly adiabatic, ballistic mode

of operation, and an increasingly reversible logic design.
* With increasingly high-Q energy transfers during logic.

UF’s AdiaMEMS project offers key techniques for
near-term reversible implementation in CMOS/MEMS.
— Potentially viable technology for ultra-low-power products.

Architectures designed today in a mostly-reversible
style will be the only ones that can be easily ported to
future ultra-high-performance reversible logic-device
technologies.




