

Laying the Key Methodological Foundations for the Design of 21st-Century Computer Technology

ace.

Michael P. Frank
University of Florida
College of Engineering
Departments of CISE and ECE
mpf@cise.ufl.edu

NanoEngineering World Forum International Engineering Consortium Marlborough, Massachusetts June 23-25, 2003

- What is Nanocomputer Systems Engineering?
- Interdisciplinary engineering of computers w. nanoscale parts.
 Recognizes tight interplay between physics and computing.
- · Physical Computing Theory
 - Models of computing based on fundamental physics.
 - Powerful, accurate, and technology-independent.
 - Key capabilities include reversible and quantum computing
- · Technology Scaling and Systems Analysis
 - Compared cost-efficiency of reversible vs. irreversible technologies.
 - Reversible computing may win by factors of ≥1,000× by mid-century.
 - We outline how this projection was obtained.
- Conclusion: More attention should be paid to the design of reversible, ballistic device mechanisms.
 - Low leakage, high ${\cal Q}$ factor will both be critically important in bit-device engineering for nanocomputers.

- 1. Moore's Law vs. Fundamental Physics
- 2. Methodological Principles of NCSE
- 3. Physical Computing Theory
- 4. Reversible Computing
- 5. Cost-Efficiency Analysis of RC
- 6. Conclusions

- 1. Moore's Law vs. Nanoscale Limits
- 2. Methodological Principles of NCSE
- 3. Physical Computing Theory
- 4. Reversible Computing
- 5. Cost-Efficiency Analysis of RC
- 6. Conclusions

frequency of quantum bit-operations of 12.5 THz.

· Significantly higher temperatures cause melting of all

CORP Capacity Scaling Model

- · Multiprocessing model
- Mesh-type (locally connected) interconnect structure
- Thermal pathways explicitly represented!
- Scaling in 3D up to thermal limits
- Device frequencies can be scaled down as number of devices increases, for maximum energy efficiency and cost-efficiency

Other Aspects of CORP Modeling

- · Interconnect & Timing Models
 - Interconnects and oscillators can be treated as just special cases of devices.
 - Generalized mesh-style interconnect network.
- Architectural Model (Logic gates up to Processors)
 - Architectural design tools & methodologies should not preclude efficient reversible & quantum hardware designs!
- · Programming Model
 - Should support standard programming paradigms.
 - But, should *also* permit expressing efficient reversible & quantum algorithms, in cases where these are beneficial.

Terminology / Requirements			
Property of Computing Mechanism	Approximate Meaning	Required for Quantum Computing?	Required for Reversible Computing?
(Treated As) Unitary	System's full invertible quantum evolution, w. all phase information, is modeled & tracked	Yes, device & system evolution must be modeled as ~unitary, within threshold	No, only reversible evolution of classical state variables need be tracked
Coherent	Pure quantum states don't decohere (for us) into statistical mixtures	Yes, must maintain full global coherence, locally within threshold	No, only maintain stability of local pointer states+transitions
Adiabatic	No entropy flow in/out of computational subsystem	Yes, must be above a certain threshold	Yes, as high as possible
Isentropic / Thermodynamically Reversible	No new entropy generated by mechanism	Yes, must be above a certain threshold	Yes, as high as possible
Time-Independent Hamiltonian, Self-Controlled	Closed system, evolves autonomously w/o external control	No, transitions can be externally timed & controlled	Yes, if we care about energy dissipation in the driving system
Ballistic	System evolves w. net forward momentum	No, transitions can be externally driven	Yes, if we care about performance

- Consider any system having an adjustable, bistable potential energy surface (PES) in its configuration space.
- The two stable states form a natural bit.
 - One state represents 0, the other 1.

Engineering

UNIVERSITY OF A

• Consider now the P.E. well having two adjustable parameters:

āCE

- (1) Height of the potential energy barrier relative to the well bottom
- (2) Relative height of the left and right states in the well (bias)

(Landauer '61)

- NCSE Methodology
- An important research question to be answered:
 - As nanocomputing technology advances, will reversible computing ever become very cost-effective, and if so, when?
- We applied our methodology as follows:
 - Made Realistic Model (Obeying Constraints)
 - Optimized Cost-Efficiency in the Model
 - Swept Model Parameters over Future Years

EC# CISE UNIVERSITY OF PLORIDA Enginêe<mark>inng</mark> **Important Factors** Included in Our Model

- Entropic cost of irreversibility
- Algorithmic overheads of reversible logic
- Adiabatic speed vs. energy-usage tradeoff
- Optimized degree of reversibility
- Limited quality factors of real devices
- Communications latencies in parallel algorithms
- Realistic heat flux constraints

