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Abstract.  In this memo, we develop an analytic and fairly technology-independent model of the energy efficiency of closed, self-timed reversible computing.  Some previous models of reversible computing have (justly) received criticism for not taking into account the energy dissipation within the system for delivery and maintenance of the power/clock signal.  In this paper, we explicitly derive fairly general upper bounds on energy efficiency per bit-op (lower bounds on entropy generation) when the losses in the energy delivery and timing system are taken into account.  It is found that the key determining factor of the minimum entropy generated is (unsurprisingly) the decoherence rate of the qubits encoding the computational state of the combined system (logic plus clock system), compared to the step rate or generalized temperature of the desired energy flow.  It turns out that in field-effect type devices, there is an optimal number of physical bits per logical bit, which depends on the magnitude of this quality ratio, and yields the minimum total dissipation per logical op.  Our results confirm earlier predictions that the entropy generation per logical op can be scaled down arbitrarily, as technological refinements reduce the decoherence rate or increase the internal (mechanical) temperature, and the benefits mount almost as quickly as the quality ratio itself is improved. Although some aspects of the model are inspired specifically by a consideration of field-effect type devices (such as transistors), we argue that the same model may also be interpreted somewhat more broadly as applying to any switch-type device.  [Need to redefine q to its reciprocal to match sense of word “quality.”]
Background
Independent parameters:

Device operating temperature T.
Energy per bit-device Eb.

Do devices driven per oscillator.

Transition time ttr.

Decoherence time for physical bits: td.

Leakage power per device: Plk.

Standby entropy generation rate per device: Sdt
Derived parameters:

Redundant bits per device: Bb = Eb/Tb.
Nats per device: Nb = Eb/T.  Same quantity as Bb, just different units.
Rate of (intentional) bit-flips per device: Rbf = Bb/ttr.
Power to switch device: Ptr = Eb / ttr.

Constraints:

Energy per bit-device: Eb ≥ Tb.

Margolus-Levitin relation: ttr ≥ h/2Eb.

Field-effect switching: Ptr / Plk ≤ exp(Eb / kT)

Decoherence: Sdt ≥ Bb/td.
Leakage: Sdt ≥ Plk / T
Analysis:

We can compute a minimum transition time.  The maximum rate of orthogonal transitions, such as bit-flips, according to the Margolus-Levitin relation, is:


Rbf ≤ 2Eb/h
But if the logical state of the device is encoded redundantly using Bb physical bits, then roughly all of these bits have to switch in order for the device to change its macroscopic state, so:


Bb/ttr ≤ 2Eb/h
But now, since temperature T = Eb/Bb is the average rate of transitions per bit, if we assume the logical state is at temperature T, we can write Bb as Eb/Tb, so:


Eb/ttrTb≤ 2Eb/h

But now, Eb is on both sides of the equation and cancels, so we have:



1/ttrTb≤ 2/h


h/2Tb ≤ ttr


ttr ≥ h/2Tb


ttr ≥ 0.115 ps
at T=300K (logic at same temperature as environment)
This relation is appropriate since we have already decided that h/2 represents one bit-flip action, so (h/2) divided by T, the rate at which a given amount of information is changing by a given amount, gives the time for that information to change.  We can only change faster if we have a generalized temperature T for the physical logic that is higher.  It can only be higher than the ambient heat temperature to the extent that the logic is well insulated from the thermal environment (i.e., to the extent that the quantum evolution of the logical state is well-controlled).
We assume that the total energy in the power supply/logic system is not substantially greater than that required to drive the logic system alone.  
As a result, two terms contribute to the rate of entropy generation: First, there is a term Nb/td which gives the rate of entropy generation from decoherence of the device-state qubits from causes other than thermal excitation (leakage) over the field barrier of turned-off transistors.  Second, there is a term Plk/T which is simply the leakage over the field barrier, and depends on the height of the barrier.  So we have:

Sdt = Nb/td + Plk/T.

What then is the amount of entropy generated over 1 complete transition time?  We simply multiply the preceding rate Sdt by the transition time ttr:


ΔStr = Nbttr/td + Plkttr/T.

But, we recall that the minimum Plk for a field-effect device can be derived from Ptr and the switching energy Eb, since the increase in height of the potential energy barrier preventing electrons from crossing the channel when the transistor turns off is, at most, equal in magnitude to the change Eb in gate node energy:
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But now, Ptr itself is defined as Eb/ttr, so:
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and we can simplify this because Eb/T = Nb, giving
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Since we showed earlier than ttr is not fundamentally dependent on Nb, it is clear that to minimize this expression we should minimize ttr first, and then worry about Nb.  Let ttr = h/2Tb, the minimum we derived earlier, and let q=ttr/td.  Then to find the local minimum, we let
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which occurs when q = (Nb−1)/exp(Nb), in which case ΔS is Nb2/exp(Nb).  The solution(s) for the optimum Nb in terms of q can be expressed in terms of Lambert’s W function, but Matlab annoyingly gives only one solution, an imaginary one, so to find the real solution we had to resort to writing our own numerical optimization procedure, as usual.  Here it is.  For q above e−2 there is no real solution (no local minimum) and the optimal Nb is just the minimum, Nb = 1 bit = ln 2 nat, in which case ΔS reduces to (q + ½)ln 2.   
% An M-file script to calculate the N that gives minimum S for given Q.

%   Q = Time for a transition / Time for qubit decoherence

%   N = Physical information used per logical bit

%   S = Entropy generated during transition

%

% Find the real value of N>=ln(2) that minimizes S = N*(Q+exp(N)).

%

%   If Q >= e^-2, S is monotonically non-decreasing so N=ln(2).

%

%   If Q < e^-2, S has a local minimum at N>2, we find it

%   by finding where the derivative Q+exp(-N)(1-N) crosses zero

%   and compare it to the case N=ln(2).

%

%   If Q < ~0.0862651, the local minimum will win.

%

function N = bestN(Q)

    if Q > exp(-2)

        N = log(2);

    else

        N = 2;             % Minimum possible value

        multiplier = 1.1;  % Also pretty arbitrary

        while (multiplier > 1+eps)

            if (Q < (N-1)/exp(N))

                N=N*multiplier;

            else

                N=N/multiplier;

                multiplier=sqrt(multiplier);

            end

        end

        if (Q+.5)*log(2) < N^2*exp(-N)

            N = log(2);

        end

    end

Discussion:

Suppose we wish to minimize the energy-delay product, ttrEb.  Let ttr = h/2Tb.  Let q = ttr/td = h/2Tbtd.  This is the number of physical steps in the logic per decoherence step.  Let Nb = Eb/T.  Then here is the minimum ΔS as a function of q and Nb:
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The NW-SE (y) axis is ln(q).  The SW-NE (x) axis is Nb≥ln 2 in nats.  The z (N-S) axis is ΔS.  For fixed q, the function is monotonically non-decreasing in Nb for q≥e−2, and has a local minimum at smaller q which first appears at Nb = 2 nats.   The black line curving horizontally across the figure traces this local minimum from its first appearance as q increases.  The local minimum becomes the absolute minimum for q<0.0862651… (numerically calculated), when the black line dips below the surface that we have visualized above by sweeping the left border of the figure through the x direction.  The white line is there to help visualize how far above or below that surface the black line is at a given q.  Anyway, the other black line along the left edge of the figure marks the range of values for which Nb = 2 nats is optimal.

In the below graph, the horizontal axis sweeps across different q factors, and we show the corresponding optimal choice of Nb, and the ln of the entropy reduction factor (factor reduction below 1 nat) that may be obtained with this choice.  The straight trendlines show that for small q, the optimal Nb (for minimum ΔS) scales as roughly (ln q)−1.1248 while the minimum ΔS itself scales as about q0.9039.  
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