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Abstract: 
In this memo, we analyze the maximum energy-efficiency boost that can be attained 
when converting arbitrary irreversible circuits to mostly-reversible ones in the same 
technology (using known reversiblization algorithms), in a scenario where leakage rates 
(but not entropy coefficients) are assumed to be negligible. 

One important application of this analysis is for the analysis of proposed all-
mechanical (as opposed to all-electronic or electromechanical) nanocomputing 
technologies, many which are predicted to have extremely miniscule leakage rates, such 
as Drexler’s rod logic and Merkle’s buckled logic, due to the high energy barriers that 
must be traversed to overcome steric intermolecular forces enough to cause undesired 
mechanical transitions.  The device capabilities present in these all-mechanical logics 
must be extended somewhat beyond those original proposals in order to implement the 
most asymptotically efficient reversible computing hardware algorithms that are currently 
known, but this is straightforward to do. 

The outcome of the study reported in this memo is that worst-case hardware 
efficiency scales down with roughly the 1.57 power of the energy savings in this 
scenario.  Given the constant factors of rod logic, an energy savings factor of 1,000 can 
be obtained with a roughly comparable increase in hardware cost per unit of throughput 
even in the worst case, and perhaps much less than this for an optimized reversible 
circuit. 

1. The Model 
The model used in this paper is similar to that discussed in previous memos, #M15 and 
#M16.  The sole device technology parameters we require for the present analysis are: 
 
Device parameters: 

• Siop – Entropy generated per irreversible bit-operation 
• Srdcf – Entropy coefficient, describing the entropy generated per reversible device-

cycle per unit of quickness (reciprocal of cycle time). 
• tic,min – Minimum time for an irreversible device-cycle (bit erasure event) 

 



The design parameters are: 
 
Design parameters: 

• trc – Time chosen per reversible (adiabatic) device-cycle 
• whichAlg – Choice of reversiblization algorithm used: currently this may be either 

BEN89 or FRANK02. 
• n – Number of recursive levels in the reversiblization algorithm. 
• k – Number of immediate sublevels per higher level. 

 
Here are the important raw cost measures we will be wishing to minimize: 
 
Cost metrics: 

• (dt)viop – Spacetime cost (in terms of devices times time) per “virtual irreversible 
op,”  i.e., per irreversible op in the original computation emulated in the mostly-
reversible computation. 

• Sviop – Entropy generated per virtual irreversible op. 
 
The following are the important system-level quantities whose tradeoffs we wish to 
characterize: 
 
Figure of merit: 

• AS = Siop/Sviop – Entropic advantage of reversible machine.  We wish to maximize 
this for given Ddt. 

 
Figure of demerit: 

• Ddt = (dt)viop/(1·tic,min) – Spacetime disadvantage (blowup) on reversible machine.  
We wish to minimize this for given AS. 

2. Analysis 
In this analysis, we consider only the FRANK02 algorithm since it dominates BEN89 in 
both spacetime and energy (see memo 15).  The algorithmic formulas here are also taken 
from that paper.  Consider a complete run of the reversiblization algorithm with given n 
and k applied to a single irreversible device in the original design. 

2.1. Algorithmic analysis. 
• Virtual irreversible ops per run.  (viop)run = kn. 
• Reversible ops per run.  (rop)run = (2k−1)n. 
• Device cycles per run. (dcyc)run(k,n) = { 1 if n=0, else (2k−1)(dcyc)run(k, n−1) + 

(k2−3k+2)kn−1/2} . 
• Irreversible ops per run. (iop)run = 1. 

2.2. Physical analysis. 
• Adiabatic entropy generation per run.  Sadia,run = (rop)run Srdcf /trc  

= (2k−1)n Srdcf /trc. 
• Irreversible entropy generation per run.  Sirr,run = (iop)run Siop = Siop. 



• Total entropy generation per run.  Srun = Sadia,run + Sirr,run  
= (2k−1)n Srdcf trc + Siop. 

• Device time per run.  (dt)run = (dcyc)run trc.  Recall that dcyc is given by the above 
recurrence. 

• Entropy generation per virtual irreversible op.  Sviop = Srun / (viop)run  
= [(2k−1)n Srdcf /trc + Siop] / k

n . 
• Device time per virtual irreversible op.  (dt)viop = [(dcyc)run trc] / k

n. 

2.3. Figures of merit/demerit. 
• Entropic advantage.  AS = Siop k

n / [(2k−1)n Srdcf /trc + Siop]  
= kn / [(2k−1)n Srdcf / trc Siop + 1] 

• Spacetime disadvantage. Ddt = [(dcyc)run trc] / k
n tic,min. 

2.4. Free parameter elimination. 
We can reduce the number of free parameters in the figures of merit and demerit by 
defining a new derived design variable, the dimensionless slowdown factor s = trc / tic,min.  
This allows us to simplify Ddt to (dcyc)run s / kn.  Also we can define a new derived 
technology constant, the dimensionless entropy disadvantage at irreversible speed DSti = 
Srdcf / tic,min Siop.  This lets us simplify AS to kn / [(2k−1)n DSti/s  + 1].  With these changes, 
the only independent technology parameter remaining is DSti.  The design variables are k 
(integer), n (integer), and s (real). 

3. Optimization 
We wish to generate an optimized tradeoff curve between the entropic advantage AS (our 
figure of merit) and the spacetime disadvantage Ddt (our figure of demerit).  That is, for 
any desired minimum value of AS required, we wish to know the minimum value of Ddt 
that will suffice to yield it, when the design parameters are so optimized, as well as the 
optimized values of the design parameters.  Or, equivalently, for any given maximum 
value of Ddt that can be tolerated within design constraints, we wish to find the maximum 
value of AS that can be obtained when the design parameters are so optimized.  We wish 
to graph this tradeoff curve numerically, and find a simplified analytical expression that 
approximates it as well as the optimized design parameters, in terms of the technology 
parameter DSti. 

First, let us imagine that k and n are already optimized for the given DSti and the given 
maximum Ddt or minimum AS.  With k and n fixed, (dcyc)run is fixed also, and can be 
calculated using the recurrence relation mentioned earlier. 

So now, if Ddt is given, we can calculate the maximum slowdown that can be 
tolerated as s = Ddt k

n / (dcyc)run.  We can then plug this into AS to get AS = kn/ [(2k−1)n 
(dcyc)run DSti/Ddt kn  + 1] = 1/ [(2k−1)n (dcyc)run DSti/Ddt k2n  + k−n] = 1/ [((2k−1)/k2)n 
(dcyc)run DSti/Ddt + k−n].  Therefore all we need to do is search the space of possible n and 
k values to maximize this expression, or in other words to minimize [(2k−1)/k2]n (dcyc)run 
DSti/Ddt + k−n.  Note we can combine the input variables DSti and Ddt into one 
dimensionless ratio R = DSti/Ddt, a combination of application constraints and technology 
parameters which is then the only independent parameter needed to determine the 
maximum value of AS that we can obtain, by taking the reciprocal of the minimized value 



of [(2k−1)/k2]n (dcyc)run R + k−n.  Note that smaller values of R will lead to larger values 
of AS.  This makes sense, because if either the entropic disadvantage of a reversible gate 
running at the same speed as an irreversible gate (DSti) is low, or if the spacetime blowup 
that can be tolerated (Ddt) is high, then this gives a better opportunity for reversible 
energy savings. 

4. Program 
Here is a simple C++ program to generate results according to the above-described 
optimization procedure. 
 
#include <stdio.h> 
#include <math.h> 
 
double deviceCycles_per_run_Frank02(int k, int n) { 
 
   if (n==0) return 1; /* No recursive levels?  Just 1 unit. */ 
 
   /* Explanation of the below formula: 
    - There are 2*k-1 subtriangles, each taking m(k,n-1) devcycles. 
    - Plus, there are (k-2)(k-1)/2 "units" of temporary storage 
      added by this supertriangle, where each "unit" is a bit 
      stored over the total time taken by a subtriangle. 
      Each subtriangle takes time k^(n-1) in my algorithm.  
      (See my notes dated 3/23/02.) */ 
    
   return (2*k-1)*deviceCycles_per_run_Frank02(k,n-1) + (k*k-
3*k+2)*pow(k,(n-1))/2; 
} 
 
double entropy_disadvantage(double R, int k, int n) { 
  return 
    pow((2*k-1)/(double)(k*k),n) * deviceCycles_per_run_Frank02(k,n) * 
R 
    + pow(k,-n); 
} 
 
void minimize_entropy_disadvantage(double R) { 
  int best_n = -1; 
  int best_k = -1; 
  double min_disadvantage = -1; 
 
  for(int n=0; n<10; n++) { 
    for(int k=2; k<200; k++) { 
      double D = entropy_disadvantage(R,k,n); 
      if (min_disadvantage == -1 || D < min_disadvantage) { 
 best_n = n; 
 best_k = k; 
 min_disadvantage = D; 
      } 
    } 
  } 
 
  printf("%g\t%d\t%d\t%g\n", 1/R, best_n, best_k, 1/min_disadvantage); 
} 



 
void sweep_R() { 
  double R; 
  for ( R = 100; R >= .99e-9; R *= pow(.1,.1) ) { 
    minimize_entropy_disadvantage(R); 
  } 
} 
 
int main(int argc,char**argv){ 
  sweep_R(); 
} 

5. Results 
Below is a plot of the above program’s output.  The horizontal axis is the adjusted 
hardware blowup B : �  1/R = Ddt/DSti, the hardware efficiency disadvantage that can be 
tolerated within the application, divided by the hardware disadvantage of a reversible 
device running at a speed at which its adiabatic losses are the same as the losses in an 
irreversible device, in the given technology.  The blue-diamond and green-square lines 
show the values of n and k, respectively that are optimal in each case.  The red-triangle 
line shows the value of AS that can be obtained with the given adjusted hardware blowup. 
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The red line shows a least-squares power-law fit to the AS data curve.  In the range of 
values studied, the entropy advantage AS scales roughly as the hardware blowup B to the 



~0.64 power.  Note that for extremely high values of B, the exponent of the power law 
(slope of the log-scale curve) increases slightly.  Reading off the chart, the below table 
lists the approximate specific blowup factors that are required to attain various energy 
reduction factors: 
 
 Energy Reduction  Adjusted Hardware Blowup 
 10................................................... 400 
 100...............................................15,000 
 1,000.............................................500,000 
 10,000........................................12,000,000 
 100,000......................................300,000,000 
 
Note that the above analysis assumes that the FRANK02 algorithm, specifically, is used to 
translate an arbitrarily irreversible computation to an equivalent reversible one.  On the 
other hand, if a more efficient algorithm is used (perhaps specialized to the specific 
circuit being translated), the adjusted hardware blowup factor can be reduced to be equal 
to (at best) the energy reduction factor.  Note however that if particularly efficient 
reversible devices are used with DSti (entropy disadvantage at irreversible speed), that is 
much less than 1, then the hardware blowup can potentially be less than the energy 
reduction factor. 

6. Application to Rod Logic 
In Nanosystems (p. 370, §12.7.4), Drexler summarizes the dissipation of reversible and 
irreversible storage elements as 0.03 zJ and 4.4 zJ respectively with a clock period of 1.2 
ns.  If this speed is taken to be the maximum speed for an irreversible rod logic device, 
this implies a DSti value of 0.03/4.4 = 0.0029.  Since the real hardware blowup Ddt = 
B·DSti, the numbers in the previous table must be multiplied by DSti to give us a real 
hardware blowup for the case of rod logic, as shown in the below table: 
 
 Energy Reduction  Actual Hardware Blowup 
 10...............................................1.1 
 100................................................43 
 1,000...........................................1,400 
 10,000.........................................34,000 
 100,000.......................................860,000 
 
Note that these calculations assume that the original machine that is being transformed 
used irreversible devices exclusively.  That is, we are giving the factor by which the 
dissipation from irreversible devices may be reduced via replacing them with reversible 
devices with a given factor reduction in hardware efficiency.  If part of the original 
system’s energy dissipation already consists of reversible device operations, our analysis 
will not necessarily optimize the entire system’s dissipation.  For that, we would have to 
add a parameter to the analysis which is the fraction of the device-operations in the 
original design which were already reversible.  However, the overall results are expected 
to be very similar to these. 



6. Conclusion 
Using particularly low-leakage devices such as those possible using nanomechanical 
logic styles such as Drexler’s rod logic, the replacement of arbitrary completely-
irreversible logic with mostly-reversible logic leads, even in the worst case of automatic 
translation, where the specific reversible circuit algorithm used is not hand-optimized at 
all, to reductions in energy per operation that are roughly comparable in magnitude to the 
amount of increase in circuit complexity per unit of throughput.   

So, for example, the dissipation of an all-irreversible rod-logic circuit can be 
reduced by a factor of 1,000 via a straightforward translation (using the FRANK02 
algorithm) while reducing hardware efficiency by only a factor of 1,400.  In this 
particular case, the optimized parameters of the algorithm happen to be n=2, k=55, 
meaning that every sequence of kn = 3,025 cycles of the original computation is broken 
into 55 segments of 55 cycles each.  Each segment is done reversibly, accumulating 
intermediate states, and then undone after reversibly recording its output.  The entire 
sequence is then undone, after irreversibly recording its output.  The increase in circuit 
complexity required to do this is a factor of about 55+55 = 110, but the increase in 
device-cycles per run is not quite so great as this because not all storage elements are 
used on every cycle, and so can be shared with other computations as we described in 
memo 15. 

In conclusion, in rod logic computing scenarios (or other low-leakage 
technologies) where overall throughput is primarily limited by thermal constraints rather 
than by hardware cost, throughput can be increased through the increased use of 
reversible logic.  The worst-case energy savings scales asymptotically with the 0.64 
power of the hardware blowup, or in other words, the worst-case hardware blowup scales 
as the 1.57 power of the energy savings.  Depending on the exact characteristics of the 
specific device technology, the constant factors may also favor reversible logic by an 
additional factor.  Custom reversible circuits for specific applications should yield even 
greater benefits. 


