TECHNIQUES FOR EFFICIENTLY RECORDING STATE CHANGES OF A
COMPUTER ENVIRONMENT TO SUPPORT REVERSIBLE DEBUGGING

BY

STEVEN ALLEN LEWIS II

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2001

Copyright 2001

by

Steven Allen Lewis Il

ACKNOWLEDGMENTS

During the summer of 2000, Professor Dave Small suggested to me that the CISE
department of the University of Florida would have interest in a modernized MIPS
simulator. 1 would like to thank Dave Small for encouraging me to pursue such a project,
which ultimately played a significant role for this thesis.

Following a brief discussion later in that year, Professor Small suggested that |
contact Dr. Michael Frank, whose research includes many aspects of reversible
computing. Indeed, Dr. Frank was instrumental in leading me to existing research
regarding reversible debugging and reversible program execution. | would very much
like to thank Michael Frank for his guidance, his patience, and his assistance in refining
the techniques discussed in this thesis. Further, I would like to thank Dr. Frank for his
role as my committee chairperson.

I would also like to thank Dr. Randy Chow and Dr. Manuel Bermudez for serving
as committee members for this project. Their support for this thesis came indirectly from
the courses that they taught, specifically the compiler courses by Dr. Bermudez and the
operating system courses by Dr. Chow. | learned a great deal from these courses,
including the following two concepts that | have found to be particularly useful: the use

of context free grammars and the layered approach to software development.

TABLE OF CONTENTS

page
ACKNOWLEDGMENTS ...ttt bbbt i
LIST OF FIGURES.ottt sttt neene e vi
ABSTRACT ..t bbb bbbttt bbb bbb vii
CHAPTERS
1 INTRODUCTION. ...cttitiitiitt sttt sttt et e se e e e et e ntesbenreane e 1
Reversible Debugging CONCEPL.......cviiiiieiieir e 1
OVErvieW OF THeSIS CONTENT........iiieiiiieiieie et 3
OULHNE OF THESIS ...ttt e bbb 4
2 COMPACT REPRESENTATION OF STATE HISTORYocoviiiiiiiieieneeseseeas 5
State Change EXAMPIEovoii e 6
State HiSTOrY STACKoiieeiiiic et esre e 8
CNECKPOINTS ...ttt b et b et et s st e sbe e e e sreenbeanee s 9
Analysis of State HiStory GrOWEh ..o 10
Data Representation of State HiStOrYcccuoeiiiiiiieiieiece e 12
3 CHECKPOINT CREATION PROCESS........coeiiiiiieiieiesieseseeie et 23
4 WHEN TO CREATE CHECKPOINTSooiiiiiiiinieieie e 31
5 CHECKPOINT CULLING PROCESS.......cccoiititiiiieieiesese e 38
6 RESULTS AND ISSUES.... ..ot 45
State HiStory Growth StatiStICSceeiiiiiiieiiei e 46
RE-EXECULION ISSUES ...ttt bbbt 48
IrrEVErSIDIE EFTECTSoiiiieieiee e 50

7 CONCLUSION AND FUTURE WORKcoiiiiiiiiiciie e 52

CheCKPOINT DEILAScveiieiieeie et esteenaenreenne e e 53
Reverse Checkpoint DEITASccvoiiiiiiieiiiie e 54
Circular State Change Record BUTTer..........cccvviviiiiiiiiii e 54
Alternative Checkpoint Creation DECISIONcccceieeiirieiieie e 55
(08 K] 1110 | 1 TP R PR POTPTPR PRSPPI 55
APPENDIX
JAVA IMPLEMENTATION OF MIPS SIMULATOR (J.I.LM.S.) ..o, 57
The MIPS ASSEMDBIET ...t 57
Y0 o] oJo] g (=T0 l DT (T €AY PRSPPSO R 58
SUPPOITEd INSIFUCTIONS.eeuviieieie ettt nne e 59
The ASSEMDIY PrOCESSveivieiiiieiieie ettt 61
SAMPIE MIPS PrOQIAMS ...cuviiieiiieieeie sttt sttt et nne e e 63
SR T S bbbt 63
FACTOR.S ..ttt ettt b e s e st et e b et et e et e e beebeeneaneeneeneens 64
The MIPS SIMUIALOT ..o e et 65
THe SIMUIALOT COTE ... bbb 66
Highlights of Simulator Source Regarding State History Recordingccccuc..... 67
Simulated Checkpoint CUITINGcooveiiiiiiiee e 76
LIST OF REFERENCESoiiiiiiieie e 77
BIOGRAPHICAL SKETCH.. ..ttt 79

LIST OF FIGURES

Figure Page
2.1: State HIStOry MOc..ooeie e et 5
2.2: Sample MIPS ASSEMDBIY Program.........cccoveiiiieiieie et 6
2.3: State Changes of SamPple Program ..o e 7
2.4: State History Growth During Forward EXECULIONccccveieiieriiie e 10
2.5: State History Reduction During Reverse EXECULION...........cooviieiienieniesiene e 11
2.6: Growth of State HiStory OVEr TIME......c.coveiiiieiieie e 11
2.7: Contents of Example Initial State Checkpoint............ccooiiiiiiiii e, 13
2.8: Contents of Example First State Change ReCOrd.........cccccevvevviieiienisie e 15
2.9: Remaining State Change Records for Example Programcccooceevviiinniiin e 16
2.10: Second Checkpoint for Sample Programccoveveiieiesie e 18
2.11: Sample Context Free Grammar for State History Recordingccoccevvevviinieeninnne. 20
3.1: JIMS MeMOIY MOGEL........ocvieiice e 29
4.1: Effect of Checkpoint Creation CONSIANTccviiieiiiiiiiee e 37
5.1: Checkpoint Culling AlGOrithm..........ccoivei i 39
5.2: State History Model With Checkpoint CUulling..........cccooiriiiiiiniesiee e 44
6.1: State History Growth Statistics USiNg JIMS..........cccooiiiiiiiiie e 47
6.2: SAMPIE SLALE HISTOIY ...ueiiiieiiiei ettt 48
A.1: Layout of JIMS Assembler SOUrce COUE........ccviveiiiiieiieie e 57
A.2: Layout of JIMS Simulator SOUICe COUEcovuveiiiiiiiee e 65

Vi

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

TECHNIQUES FOR EFFICIENTLY RECORDING STATE CHANGES OF A
COMPUTER ENVIRONMENT TO SUPPORT REVERSIBLE DEBUGGING

By
Steven Allen Lewis Il

August 2001

Chairman: Dr. Michael P. Frank
Major Department: Computer and Information Science and Engineering

The notion of a truly reversible computer offers many potential applications. One
such application is reversible debugging, also known as bi-directional debugging.

Modern debuggers allow one to pause the execution of a program, generally for
the purpose of trying to identify an error within the program. In the early stages of
attempting to locate the cause of an error, the debugging process would be more intuitive
if one could undo the effects of the program on the state of the environment. That is,
execute the program in reverse.

The potential benefit of reversible debugging is that less time is spent on
debugging, which is a process that is normally overly tedious due to the inefficient
manner in which it is performed. Further, some programs, such as those that are non-

deterministic and operate in real time embedded environments, cannot be debugged by

vii

traditional means. The use of state change recording, or history logging, is one means by
which such programs could be debugged.

This thesis describes a set of techniques that, when used together, provide an
efficient means of recording state changes. A case study is included that demonstrates
the use of these techniques within a fully functional MIPS simulator implemented in
Java. However, the techniques described are hardware and language independent.

These techniques rely on both state change recording and program re-execution.
State changes are recorded incrementally during each cycle of execution. Periodically,
the current set of state changes is accumulated into a checkpoint structure. A stack of
checkpoints is maintained, allowing the executing program to be reversed indefinitely.

The primary concern of such history logging techniques is the unbounded growth
of history information. A checkpoint culling algorithm is used to bound the size of the
state history to a logarithmic function, as well as maintain a linear run time for undo

operations.

viii

CHAPTER 1
INTRODUCTION

This thesis is concerned with techniques regarding how state changes in a
computer environment can be recorded efficiently. A case study for the use of these
techniques is mentioned throughout the discussions. The study involves implementing a
MIPS simulator (called JIMS) that records state changes, for the purpose of allowing
simulated programs to execute in reverse (i.e. undoing the effects of the program to the
state of the environment). The ability to execute programs in reverse is extremely useful

[1-3], particularly in the context of debugging [4-6].

Reversible Debugging Concept

When an unexpected state is encountered during the execution of a program, the
process of debugging involves three general steps: (1) locating the cause of the error, (2)
correcting the error, and (3) testing to ensure that the error is in fact removed and that
new errors have not been introduced. Depending on the complexity of the program and
the nature of the error, the debugging process can be extremely tedious. The act of
locating the error, or rather locating the cause of the error, can be particularly time
consuming. Most debugging tools have the ability to pause the execution of a program
(using breakpoints and special trap instructions). While a program is paused, one can
examine the state of the environment and determine if that state is as expected (i.e. if an

error has occurred yet or not).

Typically the execution of a program is stopped (by a breakpoint, for instance) at
some point after an error has been encountered during execution. However, often the
cause of an error precedes the manifestation of that error. Consequently, the general
accepted practice of debugging is to mentally examine the logic of the program source
code, specify a new breakpoint at some earlier statement of the program, and then re-
execute the program from the beginning. These steps are repeated until the cause of the
error is realized.

The aforementioned debugging process is well suited for small programs that are
well understood and deterministic. However, there are two primary drawbacks to this
process: (1) Deciding an appropriate position of a breakpoint is often a matter of
speculation. The first breakpoint that is set is almost always after the occurrence of an
error becomes apparent. However, there is no guarantee that a newly chosen breakpoint
will lead to being closer to the cause of the error. For instance, a breakpoint might be set
too early, thus requiring the program to be slowly executed forward such as not to
inadvertently overstep the error. (2) Re-executing a program from the beginning, for the
purpose of stopping the program at a point that is hopefully closer to the cause of the
error, is inefficient. The runtime of a program, up until the first breakpoint is
encountered, could be very long. In addition, if the program is non-deterministic,
returning to the state in which the error was encountered might not be easily achieved.

For some programs (such as deterministic programs that have a fast runtime),
program re-execution can be used to emulate reversible debugging by automating the
traditional debugging process [7]. For more complex and non-deterministic programs, an

alternative approach is necessary. Such an alternative would include recording changes

to the state of the environment over time. The primary drawback of state change
recording, or history logging, is that a great deal of information is involved. Moreover, in
order to offer practical performance, this information must be readily available, such as
by being stored in main memory or some readily accessible storage facility. However,
state change recording (of some form) is necessary to fully support reversible debugging
of non-deterministic programs.

Other approaches to supporting reversible execution include a reversible
instruction set [8] or program inversion algorithms [9]. These approaches are highly
promising, though they tend to require fundamental changes to existing hardware and

software systems.

Overview of Thesis Content

The content of this thesis describes techniques that can be employed to implement
instruction level reversibility of a computer system, using state change recording. The
JIMS project demonstrates these techniques in a useful and fully functional application.
However, JIMS is not the focus of this thesis. Instead, the intention of this thesis is to
describe the design of, and discuss issues related to, techniques for efficient state history
recording.

No attempt is made to justify that state history recording is a superior means of
accomplishing the application of reversible debugging. Nor are the techniques that are
described considered to be the most efficient. However, my opinion is that the
techniques described herein are highly general, being hardware and programming
language independent. Moreover, these techniques can be applied by augmenting

existing hardware or software systems.

Should one need instruction level reversibility, this thesis describes a possible
means of satisfying such a need and at least some of the associated technical issues.
After having implemented JIMS, the experience suggests that many aspects of
reversibility are a compromise between computational complexity and memory space
usage. As | see it, the problem of supporting reversibility is analogous to modeling the
human brain’s ability to remember a considerable amount of information over a very long

time. Undoubtedly, we would benefit from further research in both areas.

Outline of Thesis

Chapter 2 contains a verbose example that demonstrates what is meant by a state
change, and what is necessary in order to record a state change. The example also
includes the use of checkpoints, discusses the association between state change records
and checkpoints (within the context of this thesis), and discusses an efficient means of
representing state history.

Chapter 3 discusses the task of how to create a checkpoint efficiently, which
involves identifying only those state variables that have been modified. Chapter 4
describes several techniques for determining when a checkpoint should be created.

Chapter 5 addresses the issue of unbounded growth of state history information.
This chapter describes a checkpoint culling process that maintains a logarithmic growth
of recorded state history space usage.

Chapter 6 concludes this thesis by demonstrating the growth of state history when
using these techniques, and commenting on related issues not mentioned in the previous
chapters.

Appendix A contains information regarding the JIMS project.

CHAPTER 2
COMPACT REPRESENTATION OF STATE HISTORY

For the purpose of this thesis, the term state history refers to the entire structure
used to hold all state change information. State history should be represented as a vector
to which new entries can be appended and existing entries can be deleted. It is generally
not necessary to insert entries into the state history. The state history vector consists of
two types of entries: (1) checkpoints and (2) state change records. Checkpoints record
the entire modified state of the machine at a particular point in time. State change
records store only incremental changes to the state. When a checkpoint is created,
essentially all the information stored in the current set of state change records is
compacted into a single checkpoint. As a result, checkpoints are always at the beginning
of the state history, followed by the current set of state change records. Figure 2.1 shows

the general structure of the state history model.

3TATE HISTORY
CHECEFOINT 0O

CHECEFOINT 1

CHECEFOINT n

ATATE CHAMGE RECORD O
STATE CHANGE RECORD 1

ATATE CHAMGE RECORD

Figure 2.1: State History Model

The remainder of this chapter discusses, by means of an example, how both

checkpoints and state change records can be efficiently represented in a data stream.

State Change Example

Consider the hypothetical MIPS program shown in Figure 2.2. While this
program does nothing special in particular, the instructions used are a representative
combination of load, store, branch, and arithmetic operations. The hexadecimal values

on the left represent a supposed address associated with each instruction and data entry.

.Lext
O=0040 1i ftZ, 4
Ox0044 aw $tE, ¥
O=x0045 1i ft3, 8
Ox004c] main
0x0100 mwain: addi §to, §tz, 500
Ox0104 ar $ti, $tz, $t3
0x0105 heqg ftl, §t3, eq
O=x010c 1i dt3, Z00
Ox0110 eq: au i3, x
Ox0114 1w ftl, ¥
O0x0118

Jdata
O=5040 x: Lword 0x 53543591
O=3044 +: Lword O0x34736534

Figure 2.2: Sample MIPS Assembly Program

Although tedious, it is instructive to manually demonstrate how the state changes
of this program would be recorded. By examining this short program thoroughly, one
can gain a better understanding of the general pattern of information that is changed
during each cycle of program execution.

Let us first consider executing the sample program without recording state

changes, but rather just examining the effect that the program has on the state. Assume

the program begins at address 0x0040. Figure 2.3 shows the state changes that occur
during the first ten cycles of execution. The crossed out values represent old information
that was replaced by some new value. The values that are not crossed out represent the
current value of the corresponding state variable. Notice that the Program Counter was
changed during each cycle. In fact, there is an instance where the Program Counter is

modified twice during the same cycle.

ipc = L0040 Ooebodd DabOds Dae00ds Dw00ED Sa0loo
00304 Oe0l0s Owdl0s Deedllo Dx0lld4 00112
$cd = o ED4
$cl = o +E 4
3EE = & 4
3 = o =S pduu]
Hn:
Ox2040 = £2 0
Ox2041 = £q 0
Ox204z = =1°1 0
Oxs0d42 = a1 Zoo
e
Ox504d = o]
Ox5045 = 2]
OxS048 = &5]
Ox5047 = o 4

Figure 2.3: State Changes of Sample Program

By examining Figure 2.3, it is evident that in order to record the state change
history of this program, we simply need to remember all of the crossed out values.
However, we must not forget one particularly important limitation: when constructing
this figure, as new values were entered, the corresponding old value was crossed out and
the new value was written in the space available to the right. If we had continued to do
this, eventually we would have run out of space in the diagram. If this had happened, we

could have just used a larger figure. The point is, however, that when recording state

changes in this fashion, it is inevitable that we would run out of space to store all of the
past values of each state variable.

In an environment that records state changes, it is important to do so in an
efficient manner due to physically limited storage capacity. This means recording
information promptly while using no more storage space than necessary. We will now
consider executing this program and efficiently recording the changes made to the state

of the environment.

State History Stack

Suppose it were possible to maintain a stack associated with each state variable
(e.g. each register, memory cell, etc.). Each stack would record any change to its
respective state variable. That is, before a new value is applied to any state variable, its
current value is pushed onto the corresponding stack of that variable. To perform an
undo operation, one would pop the top value from the Program Counter, and then simply
undo the effect of the instruction at the address pointed to by the Program Counter. As a
generic example, if an ADD instruction was issued that wrote its result to register $t 0,
then to undo its effect we need only to pop the top value of the $t 0 stack and apply that
value to register $t 0.

Ideally, this technique would work. Though, in reality, the cost of maintaining a
stack for each state variable is prohibitive. However, with this insight in mind, the
remainder of this chapter discusses an alternative approach to recording state history
information.

In the state history stack approach, only one stack is needed. When a state change

is made, two pieces of information are pushed onto the stack: (1) an indication of what

state variable was modified, (2) the pre-modified value of the state variable. For
example, suppose an XOR instruction was issued that wrote its result to register $t 7.
Before storing the result into register $t 7, and assuming that the current value of $t 7 is
5, we would (for example) push onto the state history stack “REG $t 7 5” (the actual
encoding is discussed later in this discussion, though for now we can assume a literal
sequence of ASCII characters or tokens is used). If an undo operation was then
requested, we simply pop from the state history stack, and see that register $t 7 should be
restored to the value 5. The records pushed onto the state history stack should indicate
the original value of each state variable modified during the corresponding cycle. Keep
in mind that during each cycle of execution, multiple state variables might be modified.
Before discussing how state change information is actually encoded, it is
important to first clarify the relationship between checkpoints and state change records.

The next two sections of this chapter describe this relationship.

Checkpoints

The growth of the state history stack, as described above, is obviously unbounded.
However, we can take advantage of the manner in which computers execute programs.
When a certain condition is met (refer to Chapter 4), we can construct a checkpoint that
records the value of all modified state variables at that time. Then we can replace the
entire contents of the state history stack with this checkpoint.

Furthermore, we can maintain a stack of checkpoints. In doing so, if one ever
desires to return to a state before the creation of the last checkpoint, we can set the state
to that of an earlier checkpoint and re-execute the program until the desired execution

point is reached. While there is a performance penalty (among other issues) in

10

performing re-execution, the benefit of using checkpoints is that some space is conserved
and the amount of time spent for re-execution is reduced.

Checkpoints are often used in database systems and operating systems, typically
for data recovery reasons [10]. However, checkpoints have numerous other applications

[1], particularly for reverse execution of parallel programs [11].

Analysis of State History Growth

Figure 2.4 and Figure 2.5 show the growth and reduction of the state history,
during forward and reverse program execution respectively. The numerous smaller
blocks represent individual state change records (indicate by label A in Figure 2.4), while
the larger blocks represent one checkpoint (C). Within each checkpoint block, the larger
sized number represents the corresponding time index, such as a cycle count (B), while

the smaller sized number represents the relative size of the checkpoint (D).

= 50{—B
= —c
E 154+—0D
= = 40 40 40
= = 14 14 14
= |30 30 30 30 30
— 1z 1z 1z 1z
0 0 0 0 0] 0
1o 10 10 10 10 10 10
CYCLE INDEX| O 1-30 31 FE-TZ 73 T4-124 125
SIZE OF | 4q 40 22 62 34 54 49
HISTORY
A = State Change Record Structure
B = Tine Index of Checkpoint
C = Checkpoint Structure
D = Relative Size of Checkpoint

Figure 2.4: State History Growth During Forward Execution

11

40 40 40 40 = —
14 14 14 14 = —
a0 30 a0 a0 a0 a0 a0
1z 1z 1z 1z 1z 1z
] 0]]]]
10
CYCLE INDEX |76 75 72 73 7z

Figure 2.5: State History Reduction During Reverse Execution

Figure 2.6 shows the growth rate of state history in a graph, comparing the use of
checkpoints versus the non-use of checkpoints (i.e. use of state change records only).
The data used is that of Figure 2.4. Notice that without checkpoints, the growth rate is
linear. With checkpoints, the rate of growth is still linear (as emphasized by the dashed

line near the center of the graph), but at a much slower rate.

Growth of State History Over Time

160 ~
140 +
120 +
100 ~

History Size {Logical)
oo
=

T T
(my} -
[} o

T T T T
- Lo [y —
Lo i - [}

41 1
49 1
113 1

105 1
121 1
129 1
137 1

Time {Cycle Index)

|— Mo Checkpoints — Using Checkpoints

Figure 2.6: Growth of State History Over Time

12

The details regarding when to create checkpoints and issues related to re-
execution are discussed in later chapters. For now, we are concerned with how to

efficiently represent both incremental state change records and checkpoints.

Data Representation of State History

Returning to the example discussed earlier in this chapter (see Figure 2.2), when
the first instruction of the sample program is executed, a checkpoint is immediately
created. This first checkpoint represents the initial state of the environment. It is worth
mentioning that anytime a checkpoint is created, it is not necessary to record the state
changes of the current instruction. When such an instruction is executed, the checkpoint
just created implicitly contains the necessary undo information.

The purpose of a checkpoint is to record the current state of the environment at a
particular point in time. To accomplish this, a checkpoint contains three pieces of
information: (1) The current time index, which is used to indicate how far back in time
the checkpoint represents. This is usually a simple integer value that is always positive
and increasing, such as a cycle counter. (2) The current Program Counter. This
information is necessary in order to know from what address the program should resume
from, should this checkpoint be applied. (3) The value of all currently modified state
variables. Obviously, this last piece of information is (potentially) a large amount of
data. Effort must be made to ensure that this information is recorded as optimally and as
quickly as possible.

The initial state checkpoint for the example program would be recorded as shown
in Figure 2.7 (again, how this information would actually be encoded is discussed later in

this discussion).

13

CHEPNT B O

PC = 0x0040

Ox0040 [1i] [sw] [1i] [3]

0x0100 [addi] [or] [bec] [1i] [=w] [lw] [.]
Ox5040 53 54 85 91 34 73 65 34

Figure 2.7: Contents of Example Initial State Checkpoint

The first two lines in Figure 2.7 represent the first two pieces of necessary
checkpoint information just discussed. That is, the first line indicates that this checkpoint
was recorded at time index zero. The second line records the Program Counter for this
particular checkpoint. The remaining lines represent the modified state information,
caused by the fact that a program has been loaded. Notice that there are MIPS
mnemonics enclosed in brackets (e.g. “[I i]”). This is a shorthand notation for the
purpose of this example. In reality, each such enclosed instruction mnemonic is
represented by some bit sequence (i.e. each MIPS instruction is a sequence of 32-bits).

Although no instructions have yet been executed, the state was modified when the
program was loaded to hold the programs text and data. However, this information does
not necessarily need to be recorded. In fact, one can readily return to this state simply by
resetting the environment and reloading the program (thus the entire checkpoint is not
necessary). Alternatively, since self-modifying code is rare, one could choose to record
only the program data and not the text (since program data is often modified, unlike the
text). On the other hand, creating a checkpoint to record the entire initial state can have
two benefits: (1) It can maintain consistency and ease implementation, (2) It can save

time by not having to reload the program when returning to the initial state.

14

Generally speaking, it would probably be more optimal not to use a checkpoint to
record the initial state. But a more important issue is how the checkpoint information is
represented and stored. Although it is desirable to store information in a format that is as
compact as possible, it is also necessary to ensure that such encoding does not require too
much time. For instance, compressing the data representation of this checkpoint might
incur adverse computational overhead [12]. Although checkpoints should only be created
periodically, creating checkpoints is inherently computationally expensive. This is
because it is necessary to determine what state information to store, in addition to
actually retrieving said information. The issues regarding checkpoint creation are
discussed in Chapter 3.

For this example, we will assume that the checkpoint for the initial state is
created. On the next cycle of execution, we need only to record the state changes made
as a result of executing the instruction at that address, which is “sw $t 2, y.” This
instruction stores the contents of the $t 2 register into the word address labeled y (that is,
meniy] = reg[$t 2]). The only state change, resulting from the executed
instruction itself, is that the content of the word address starting at 0x8044 (the address
associated with label y) is changed to a 4. However, other state changes may have also
occurred. Internal CPU state variables or flags may have been changed, which may be
pertinent for the purpose of undoing the effect of the instruction. More obvious, the
Program Counter is changed during each cycle. Typically the program counter is simply
incremented by a constant value, but it may have also been changed by a branch or jump

instruction. The state changes for this cycle can be recorded as shown in Figure 2.8.

15

CYCLE 1
PC = 0Ox0044
Ox3044 34 73 63 34

Figure 2.8: Contents of Example First State Change Record

The amount of information recorded in a state change record is much less than
that of a checkpoint. Notice, however, that three general pieces of information are
recorded: the time index, the Program Counter, and modified state values. This is the
same general pattern as the checkpoint created earlier. The modified state value recorded
is the content of the word at 0x8044 before the SWinstruction applies the new value.

When storing this state change record, there are two general optimizations that
can be applied: (1) It might not be necessary to record the time index. If these state
change records are stored in a vector, such as an array, then the index of the record into
that vector can be used to indicate the time index. This may require another variable to
hold a base time index value, which would most likely be the time index of the most
recently created checkpoint. In this case, the time index for any arbitrary state change
record R[1] would be BASE _TI ME_I NDEX + 1. (2) Since the Program Counter is
typically incremented by a constant value, one could store a flag that this is the case
rather than store the entire Program Counter. However, there may be some overhead in
determining if the Program Counter was simply incremented or has a new value entirely.
Certainly one should not assume that the Program Counter is always incremented by a
constant value, as quite frequently this is not the case (such as during a branch or jump).

The state change records for the remaining eight cycles of execution for this

example program are shown in Figure 2.9.

CYCLE 2 CYCLE &
PC = 0x0042 PC = 0x0102
(L3 =0

CY¥CLE 7
CYCLE = PC = 0x010C
PC = 0x004C (L3 = 8

CYCLE &
CYCLE 4 PC = 0x0110
PC = 0x0100 0xS040 53 54 22 31
$t0 =0

CYCLE 2
CYCLE & PC = 0x0114
PC = 0x0104 il = 12
$tl =0

Figure 2.9: Remaining State Change Records for Example Program

In Figure 2.9, one state change record of interest is that of CYCLE 3. Notice that
the Program Counter is modified twice during this cycle (once during the Instruction
Fetch stage, then again during the execution of the Jump instruction). If the same state
variable is modified more than once in the same cycle, only the first instance needs to be
recorded. Or alternatively, when performing an undo operation, state changes should be
applied in the reverse order they were recorded in. In doing so, even if a particular state
variable is modified more than once in the same cycle, the earliest value will always be
the final value applied. This means that it is not necessary to use computation time to
remove duplicate entries. Of course, for the sake of optimizing space usage, one should
consider taking the time to ensure that such non-useful information is not recorded.

At this point, it might be a good idea to consider the creation of another
checkpoint. A variety of heuristics can be used to determine when a checkpoint should

be made. This is discussed in greater detail in Chapter 4. For now, it would be

17

instructive to examine what would happen if indeed a checkpoint were created at this
point in the example programs execution.

First, however, aside from actually deciding if a checkpoint should be created, a
minor issue is whether this decision should take place at the end of a cycle or at the
beginning. That is, when a cycle begins, should we decide on creating a checkpoint (and
then do so) before executing the instruction or afterwards? From an abstract point of
view, there should be no difference. This is strictly an implementation detail.

For JIMS, it was decided that all checkpoint handling would take place near the
beginning of a cycle (before the execution of the instruction). The reason is because of
the following logic: if it is decided that a checkpoint should be created, the checkpoint is
created immediately and state history recording is disabled for that cycle. Otherwise, if a
checkpoint is not created, a state history buffer is created for the duration of the cycle,
and then added to the state history records after execution (near the end of the cycle).
The idea is that disabling history recording when it is not necessary can (during
execution) conserve space and improves performance. If a checkpoint were created after
the instruction was executed, then the state changes recorded during the cycle are
redundant since the creation of the checkpoint contains the same information.

Returning to the example, Figure 2.10 shows the representation of the checkpoint

that would be created at the beginning of cycle ten of the sample program.

18

CHEPNT B 10

PC = 0x0118

Ox0040 [1i] [sw] [1i] [3]

0x0100 [addi] [or] [bec] [1i] [=w] [lw] [..]
Ox5040 00 00 00 €8 00 00 00 04

$t0 = 504
ftl = 4
$£3 = 200

Figure 2.10: Second Checkpoint for Sample Program

This checkpoint represents the accumulation of state changes made during the last
nine cycles. As such, the current collection of state history records is discarded, since
they can be reconstructed by re-executing from the previous (in this case, initial state)
checkpoint. If execution continues, this sequence of events is repeated: the state change
records reach a certain space threshold, then are replaced with a checkpoint.

Alternatively, one could maintain a dedicated buffer for state change records.
Then, rather than deleting all state change records after a checkpoint is created, any new
state change record can instead replace the oldest state change record still in the buffer.
That is, the state change record buffer is circular. This allows small undo operations
issued just after the creation of a checkpoint to be performed using state change records,
rather than re-execution from a previous checkpoint.

There are two important points to examine regarding this new checkpoint: (1) It
is slightly larger than the previous checkpoint. This should be expected, since more state
variables have been modified since the last checkpoint was created. The size of a
checkpoint, or rather the potential size of a checkpoint, should be a factor in deciding

when to create checkpoints. (2) The new checkpoint contains some identical information

19

already available in the last checkpoint. It is obvious that it would be more optimal to
store only the modified state values that differ from the previous checkpoint.

If only the state changes that differ from the last checkpoint had been recorded,
then the new checkpoint would not contain the modified word values at addresses
0x0040 and 0x0100 (since it would be redundant to do so). The problem, however, is
it is computationally expensive to detect redundant checkpoint data. A significant
amount of scanning and comparing values would be necessary.

Of course, one could apply simple techniques to remove obvious redundancy. For
instance, as mentioned earlier, self modify code is not the norm. Therefore, it is probably
not necessary to store program text in the state history information, or at least not in
every checkpoint. However, suppose it were in fact easily possible to identify and
record only those state changes whose value differs from that stored in the previous
checkpoint (a means for doing so is briefly discussed in the next chapter). This would
change the requirement for performing the undo operation. If an undo request required
the use of a checkpoint, then the process would need to start with the initial state
checkpoint, and apply each checkpoint thereafter in sequence (until a checkpoint with a
suitable time index was encountered), then re-execute from that point towards the desired
time index.

There are two arguments for simply recording all modified state values during the
creation of each checkpoint: (1) To maintains consistency, which benefits design and
implementations. (2) When running a program with a long run time, one can cull out old
checkpoints as necessary. Not because these checkpoints are not useful, but because the

state recorded in these checkpoints can be re-constructed by re-execution from earlier

20

checkpoints. The culling process, which is discussed in Chapter 5, is intended to prevent
the size of the recorded history information from becoming exceedingly large.

Having examined the example described earlier in this discussion, we can
formally specify a language that describes the state history. Using the notation of regular
expressions, Figure 2.11 shows a context-free grammar that could be used to describe the

syntax of recorded state history information.

StateH story -> Checkpoi nt* St at eChangeRecor d*

Checkpoi nt -> ‘¢’ Tinmelndex ProgramCounter State*
->

St at eChangeRecord -> ‘s’ Tinel ndex? ProgramCount er SCR St at e*
->

Ti mel ndex -> ‘<word>’

Pr ogr anCount er -> <wor d>’

ProgranCounter SCR -> ‘i’ /!l Indicates PCis increnmented
->'a ‘<word> // Indicates new PC address

State -> ‘r’ Wi chReg RegVal ue

->‘m Address Val ue* ‘e’
-> ‘f’ Wi chFl ag Fl agVval ue
->

Whi chReg -> ' <byte>’
RegVal ue -> ‘ <wor d>’
Addr ess -> ‘ <wor d>’
Val ue -> ‘' <pyt e>’
Whi chFl ag -> ‘' <pyte>’
Fl agVal ue -> ‘' <pyt e>’

Figure 2.11: Sample Context Free Grammar for State History Recording

By using the grammar described in Figure 2.11, the following sequence would be
used to record the initial state checkpoint used in the earlier example (this sequence

would be stored in some pre-allocated byte array or data stream):

CHECKPO NT 1: c 0 0x0040
m 0x0040 [li] [sw [li] [j] e
m 0x0100 [addi] [or] [beq] [li] [swW [IwW e
m 0x8040 53 54 88 91 34 73 65 34 e

21

Assuming that all of the integer tokens are 32-bit (requiring four bytes each), and
each non-integer token (i.e. ¢, m e) and memory value consumes only one byte, then this
sequence requires 75 bytes of storage. The nine state change records that follow would be

encoded as follows:

CYCLE 2: s 1i mOx8044 34 73 65 34 e
CYCLE 3: s2ir $t30

CYCLE 4: s 31

CYCLE 5: s 4 a 0x0100 r $t0 O

CYCLE 6: s5ir $t10

CYCLE 7: S 61

CYCLE 8: s 7ir $t3 8

CYCLE 9: s 8 i mO0Ox8040 53 54 88 91 e
CYCLE 10: s 9ir $t1 12

Using the same assumptions used with the checkpoint sequence, and also
assuming that the register index (Whi chReq) is encoded using only one byte, these state
change records altogether use 108 bytes of storage (averaging 12 bytes per cycle). Notice
that the recorded time index is simply incremented during each cycle. As mentioned
earlier, some optimization can be done by not storing the time index for each state change
record (though it is necessary to store a time index with each checkpoint). Doing so
would reduce this sequence to 72 bytes (an average of eight bytes per cycle, a 33%
improvement). Also, the use of the s token appears redundant, however it is necessary in
order to mark the beginning of each state change record.

For completeness, the second checkpoint created would be recorded by the

following sequence:

CHECKPO NT 2: c 10 0x0118
m 0x0040 [1i] [sw [li] [j] e
m 0x0100 [addi] [or] [beq] [li] [sW [Iw] e
m 0x8040 0 0 0 200 0 0 0 4 e
r $t0 504
r $t1 4
r $t3 500

22

With the same assumptions as before, this would use 93 bytes of storage. Notice
that this is smaller than the combined size of the state change records (i.e. 93 < 108).
Since this checkpoint replaces the current set of state change records, creating this
checkpoint conserves some space. Also notice that the redundant data in this checkpoint
has not been removed. In particular, the redundant data is the text of the loaded program.

The final issue is where the state history information should be stored. If the CPU
itself recorded state history, the information could be stored in a cache dedicated to this
purpose. This would facilitate the debugging of embedded system level software and
operating systems. If a critical or unexpected error was encountered, an exception would
incur and state history recording could be stopped. Within the exception handler, the
developer could not only examine the current value of registers and other state variables,
but also revert to previous instances of the state (to pinpoint the cause of the problem).

At the operating system level or application level, state history could be buffered
at a designated region of main memory or a disk. Storing the entire state history to disk
would probably not be practical, for performance reasons. However, it might be a
reasonable compromise to store checkpoints to disks rather than in main memory, and
keep state change records in memory. One interesting prospect is that the operating
system could record a separate state history for each process. This would certainly lead
the way to more effective debugging of multithreaded programs, distributed systems, or

parallel processing environment.

CHAPTER 3
CHECKPOINT CREATION PROCESS

Each cycle of execution most likely results in some change to the state of the
environment. At the very least, for example, the Program Counter is changed during
each execution cycle. Recording these changes to the state as efficiently as possible is
highly important, and a technique for doing so is discussed in the previous chapter.

Modern memory systems are finite, and so it is inevitable that storing state history
changes every cycle will consume all (or a large portion) of the available memory space.
Checkpoints are used to reduce the rate of growth of state history records. However,
creating checkpoints introduces computational overhead in two ways: (1) Deciding when
to create a checkpoint. This issue is discussed in the next chapter. (2) The actual process
of recording all of the modified state variables, which is discussed in this chapter.

For a modern CPU, examples of state variables include register values, contents
of main memory, internal flags, contents of cache memory, etc. If the environment has
no cache or main memory, it might be suitable for each checkpoint to simply record all of
the register values and any necessary flags. At the operating system level, state variables
might include the state of all CPUs, as well as the state of each process (opened files,
ports, and so on).

Checkpoints do not need to simply record the value of every state variable. Doing
so would result in enormous sized checkpoints. Instead, a checkpoint records only state
variables that do not have their default reset state value (typically, this means a non-zero

value). If such a strategy is used, then when a checkpoint is applied (that is, when one

23

24

desired to set the current state to the state recorded in some checkpoint), it is necessary to
first reset all state variables to their default value (such as zero), and then apply all the
state variable values stored in the checkpoint.

The primary problem, however, is how to rapidly determine which state variables
have a non-default value. The brute force approach is to compare the current value of
every state variable to that of its default value. If the values differ, then the state variable
has been modified (at least since the start of the program) and should be recorded in the
checkpoint. Generally, all state variables have a default value of zero. Although a minor
issue, it is worth mentioning that this is not always the case. Consider a status register,
which also uses some of its bits to hold a non-zero revision number. One cannot simply
compare the value of this status register to zero to determine if it has been modified.

For the sake of good performance, this brute force approach is not practical.
Consider an environment with a 32-bit addressable memory system. Each time a
checkpoint is created, this approach would require 2*2 comparisons. That is, it would
need to compare each memory address to its default value. As 64-bit memory systems
become more pervasive, the problem is compounded further. Likewise, comparisons
would need to be made for all other state variables (register values, flags, etc.). However,
there are generally only a few such variables with respect to the number of comparisons
needed for any memory system.

The advantage of the brute force approach is that it is easy to implement. The
major drawback is its performance, since (typically) comparisons are computationally
expensive. If checkpoints are created infrequently, and the number of state variables is

sufficiently small enough, this approach might in fact be practical. However, another

25

issue with this approach is that it stores more information than necessary. An alternative
approach is derived by the following idea: a checkpoint need only record the value of
those state variables that have been modified since the last checkpoint.

There are a number of reasons why it would be more practical to have a
checkpoint store all state variables whose values differ from their default value, rather
than storing only those state variables modified since the last checkpoint. The primary
reason is consistency and allowing checkpoints to be independent: any checkpoint by
itself can be used to resolve the state of the environment at the cycle during which that
checkpoint was created. If a checkpoint stores only state changes since the last
checkpoint, the state for that checkpoint can only truly be resolved by using earlier
checkpoints or the current set of state history records. This can cause problems if, for
instance, earlier checkpoints are removed or corrupted.

If a checkpoint only stores the value of state variables modified since the last
checkpoint, the implementation of the undo-process becomes more difficult (as
mentioned in the previous chapter). While a significant amount of space can be
conserved, the space saved might be less significant if an efficient checkpoint culling
method is implemented (which is discussed in Chapter 5). However, this notion at least
introduces a technique that can be used to speed up the process of determining which
state variables have been modified. This technique can be realized by the following
suggestion: in order to determine which state variables have been modified, we need
only to maintain a roster of which variables have been modified. The following describes

this idea more formally.

26

All of the state variables can be considered to be part of the set S. Each element
of S itself contains a pair of two elements: a name and a value associated with that name.
Each name in the set corresponds to some state variable (such as a register or memory
address). When a checkpoint is created, we need only to record those state variables that
do not have their default reset state value. Rather than scan the entire set S, looking for
modified state variables (by performing comparisons), we can instead define another set
M as follows: whenever a state variable is modified, the name of that variable is inserted
into set M, so long as that name is not already present in M (i.e. the elements of M must
be distinct, which can be enforced in constant time by using a hash table). It might be
helpful to divide M into several sets, such as Mg (for modified registers) and My,
(modified memory).

By maintaining a set of modified state variables, creating a checkpoint becomes
much easier and no comparisons are necessary. The checkpoint simply records the value
of all of the state variables identified in M. If one desires to have checkpoints record
only those state variables modified since the last checkpoint, this can be easily achieved
by clearing the contents of M following the creation of each checkpoint.

There are three primary drawbacks to this approach: (1) Maintaining a list of
modified state variables consumes memory space. The amount of space used depends
on the nature of program. If this issue becomes a significant problem, one could revert to
using the brute-force approach, which has no memory overhead. (2) The time required to
modify any state variable is no longer constant. When a state variable is modified, its
name is added to M only if that name is not already present in M. This requires a non-

constant amount of time. It is important to enforce this condition, in order to bound the

27

space complexity of M. (3) When performing an undo-operation, it might be necessary
to remove an entry from M. Suppose an instruction results in register R3 being modified
for the first time, and so the name “R3” is added to M. Then, suppose that instruction is
undone, meaning that register R3 has no longer been modified. As a result, “R3” should
be removed from M.

A reasonable solution to resolve this last issue would be as follows: tag each name
in M with the number of times the state variable of that name has been modified. When
the name is first entered into M, it is tagged with the value 1. If that name continued to
be modified, simply increment its tag count. When performing an undo, the tag
associated with a state variable (if present in M) is decremented. If the tag becomes zero,
the associated state variable is removed from M. Due to the computational and space
overhead of this solution, it may also be acceptable to simply ignore this issue. The
disadvantage of doing so would be that when earlier checkpoints are re-created, such as
during re-execution, they might include state variables that have not actually been
modified at that point in time.

Two techniques for creating checkpoints have been discussed: by brute-force (BF)
or by using a modified state variable set (MSVS). There are advantages and
disadvantages to either approach. The advantage of BF is its simplicity and that it does
not affect the space complexity. The primary disadvantage is its slow linear time
complexity. Although linear, Q(n) , the value of n (the number of state variables in the
environment) is very large. Using a MSVS reduces the time complexity to O(n) , where
mis only the number of modified state variables (since the last checkpoint). Commonly,

m << n, however mcan potentially be as large as n. The disadvantage of using a MSVS

28

is that the space complexity also increases by O(m) . An adaptive environment would
have implementations of either approach available.

For the implementation of JIMS, a combination of both approaches is used: BF is
used for register and internal flags, MSVS is used only for memory addresses. The
justification is that the number of registers and internal flags is small (approximately 100
variables), while the number of memory addresses is enormous (2% variables). JIMS is
implemented such that the use of a MSVS can be readily replaced by the BF approach.

While the use of a MSVS is appealing, some optimizations might be made to
reduce the number of comparisons necessary in the BF approach. For example, a
program might modify only a specific region of memory. If this range can be
predetermined [10, 12], then only the memory values in that range need be compared, not
the entire address space.

As a more general approach, the main memory address space can be divided into
logical segments (for example, a 32-bit address space can be divided into 2'® segments
each of size 2'°). A “modified flag” is associated with each segment, and has a default
value of false. When any memory address is modified, the corresponding modified flag
of that segment is set to true. Then, when a creating a checkpoint, only those segments
whose modified flag is set are considered. This approach can be used by operating
systems that create checkpoints, where the read/write bit of each memory page is used to
determine the set of modified memory pages [5, 12].

The implementation of the memory model used by JIMS makes this optimization
highly practical. The address space, which is 32-bits, is divided into segments of size 2°.

A separate modified flag is not necessary, as the modified flag is implied by the use of a

29

null-pointer. That is, suppose no memory address has currently been modified (each
address, or memory cell, is then assumed to have a default value of “0”). Then suppose
that an instruction is executed which results in address 0x AABBCCDD being set to the
value “78.”

Figure 3.1 shows how JIMS represents this fact in its memory model. The Main
Memory Buckets represent the high byte of memory addresses (i.e. OXFFO00000),
Alpha Memory Buckets represent the next byte (OXxO0FF0000), followed by Beta
Memory Buckets (0OxO000FF00). The Gamma Memory Buckets represent a segment of
2% memory cells (from 0x XXXXXX00 to 0x XXXXXXFF).

Notice that most of the buckets point to null. This indicates that no address in that
region has been initialized (or in other words, modified). For instance, in the Main
Memory Bucket, entry “01” points to null. This indicates that no address from
0x01000000 to 0x01FFFFFF has been modified. In the Alpha Memory Bucket, entry
“02” points to null. In this case, this indicates that no address from 0x AA020000 to
OxXAAO02FFFF has been modified. However, by following the pointers in Figure 3.1,

notice that address Ox AABBCCDD leads to a cell whose value is 78.

Main Memory Buckets | [j |[—> null
01 |—>null
02 [—»null
L |—nul1 Alpha Memory Buckets
As|————[o]o1]oz] .. [eB] .. [FF]
FF

o
Tn
Tn
TTnu

—=null
—>null \L J/ J/ J/ J/ J/
= = =
Beta Memory Buckets |00 [—>»null

.. |—>null oooo1 02 .0 DD ... FF Offset

—>null Gama Memory Buckets

Figure 3.1: JIMSﬁemory Model

30

Using such a memory model, one can quickly determine which regions of
memory have been modified. When a bucket that points to null is encountered, it is
simply ignored and the next bucket is considered. This significantly reduces the number
of comparisons necessary in the BF approach. Although many memory systems are not
modeled in this fashion, a technique similar to this may be a reasonable substitute for

using a MSVS.

CHAPTER 4
WHEN TO CREATE CHECKPOINTS

The previous chapter discusses how to create checkpoints, using two different
approaches. For this chapter, the issue of deciding when to create a checkpoint is
addressed. Recall that checkpoints are not created during every cycle. Only state change
records are constructed every cycle, which hold incremental changes to the state of the
environment over time.

Checkpoints are used to essentially compress a set of state change records into
one entity. More directly, a checkpoint represents the accumulation of state change
records. This reduces the growth rate of state history information, while retaining
sufficient information to allow a program to be undone indefinitely. However, one must
decide when it is appropriate for a checkpoint to be created. If checkpoints are created
too frequently, then they will increase the space requirement rather than decrease it. On
the other hand, if checkpoints are not created often enough, the performance of the undo
process can be severely degraded. The following discussion describes several strategies
for determining when to create checkpoints.

The first strategy, called NAI VE, is to simply wait a constant number of cycles.
For example, the system might dictate that checkpoints be created every 1000 cycles of
execution. Obviously this strategy is easy to implement and consistent. However, it is
not very adaptive. Waiting n cycles might be suitable for some programs, but not others.
Most likely the program would need to be run several times in order to determine an

appropriate value of n, which is probably not desirable.

31

32

The second alternative is identified as WUMF (wait until memory full). As the
acronym implies, this approach waits until memory becomes full (or nearly full) due to
the creation of many state change records. Once this condition is detected, a checkpoint
is created and the system proceeds. This allows the maximum number of cycles to be
recorded, before it becomes necessary to create a checkpoint. This approach may be
difficult to implement. For instance, at the hardware level, most hardware architectures
do not have any notion of memory being full or not. This approach might be suitable for
a compiler, where exceptions and other means can be used to indicate when memory for
the current process is full.

For lack of a better acronym, the third approach is identified as WUA (wait until
appropriate) and is described as follows: a checkpoint is created when it is determined
that the size of the created checkpoint would be less than or equal to, by some constant,
the size of the set of state change records. This approach guarantees that creating a
checkpoint would reduce the space consumed by state history information, and also
ensures that checkpoints are created frequently enough. The primary drawback is that it
may be difficult to determine the size of a potential checkpoint without actually creating
the checkpoint.

The three approaches described above assume the use of both state change records
and checkpoints. An alternative approach might only use checkpoints, then augment an
existing program source code to specify when checkpoints should be created. For
instance, with a high level programming language, one could manually specify when to

create a checkpoint [12]. As an example, the program might call a makeCheckpoi nt ()

33

function call shortly before calling some other major function, or entering some
significant program loop. A compiler might be made to do this automatically.

Each of these approaches (NAI VE, WUMF, WUA, or manually specified) is a viable
solutions for determining when checkpoints should be created. The approach that is used
would depend on the nature of the environment. There may also be an advantage to
using a combination of these three approaches within the same environment. The JIMS
project uses the WUA approach, since it appears to be the most general solution (given the
use of both state change records and checkpoints within the same system). The
remainder of this section discusses the primary issues in implementing this approach.

The Wait Until Appropriate (WUA) approach relies on being able to determine the
size of a checkpoint. Furthermore, it must also be able to determine the size of the
current set of state records. For example, suppose the current cycle of execution is 100,
and the size of the state records is 800 bytes (representing the state changes made during
the last 100 cycles). Suppose it could be determined that if a checkpoint were created
during the next cycle of execution, it would result in a checkpoint of size 300 bytes.
Therefore, if the checkpoint were created, then 500 bytes of space would be conserved
(since the 800 bytes used for state records would be compacted to one checkpoint of 300
bytes). Notice that the size of the checkpoint is less than the size of the state records by a
constant factor of 2. 66. (= 800/ 300).

In general, the WUA approach can be described by the following conditional

statement:

if ((CheckpointCreationConstant * NextCheckpointSize) <=

St at eHi storySi ze) then Creat eCheckpoi nt ()

34

The St at eHi st or ySi ze variable is the size of the current set of state change
records (such as in number of bytes). Similarly, Next Checkpoi nt Si ze is the size of
the checkpoint that would be created if a checkpoint were in fact created during the
current cycle. The Checkpoi nt Cr eat i onConst ant is simply a constant that offers
control over when a checkpoint is actually created. This constant factor is important and
will be discussed later. For now, it is important to consider how the size of a checkpoint
and the state record set can be determined quickly (since this information must be
available during each cycle of execution).

For the size of state change records, a separate integer variable is used to
represent this information. The value of this variable is incremented and decremented
accordingly as state records are added (during step) and removed (during undo), and set
to zero following the creation of any checkpoint. The size of a checkpoint is
approximated in a similar fashion, by knowing the number of state variables (and of what
kind) that have been modified. For example, if five memory addresses have been
modified and two register values, the size of the checkpoint could be estimated as
5*Byt esPer Modi fi edMenory + 2*Byt esPer Modi fi edRegi ster.

As mentioned earlier, the Checkpoi nt Cr eat i onConst ant is a significant
part of the WUA approach. This constant controls how often checkpoints are created. In
order to better understand the role of this constant, three different MIPS assembly
programs were experimented with. Each program was executed (using JIMS Release 1)
until completion 22 times, where each execution used a different value of the constant.

The three programs are briefly described as follows: (1) SQRT determines the

square root of a large double precision number using Newton’s Method. This program

35

has a short runtime and performs only one memory reference. (2) SORT uses the Swap
Sort technique to sort a given sequence of numbers stored in memory. (3) FACTOR uses
a Naive Factoring Algorithm to determine all factors of a given integer.

Figure 4.1, at the end of this chapter, show the effect of different constant values
for these three programs. When the Checkpoi nt Cr eat i onConst ant is set to zero,
this implies that checkpoint creation is disabled (i.e. no checkpoints are created). Each
graph shows the size of the state history (including both state change records and
checkpoints), which is recorded in bytes. In addition, each graph shows the average
distance between checkpoints, in terms of number of cycles. These two statistics were
recorded once the program terminated. As per the JIMS Release 1 implementation,
checkpoints record all modified state variables at the time they are created (not just the
modified state variables since the previous checkpoint). For this experiment, checkpoint
culling (which is discussed in the next chapter) was not enabled.

From these three graphs, the following trends are observed regarding the value of
the Checkpoi nt Creat i onConst ant : (1) A value of 1. O offers no practical
benefit, except to remove the small overhead of maintaining a large set of state change
records. (2) A value of 2. 0 apparently reduces the size of the state history by the fastest
rate of improvement. Larger values typically offer greater reductions in the size of the
state history, but at a much slower rate of improvement. (3) As the value of the constant
increases, so does the distance between checkpoints. (4) A large constant value is not
necessarily better. For example, in the SQRT program, a value of 21 is so large that the

program terminates before any checkpoint is ever made.

36

As a conclusion, the value of the Checkpoi nt Cr eat i onConst ant should
probably be between 2 and 5. Such a range ensures that checkpoints will help in
reducing the growth rate of the state history, while keeping the average distance between
checkpoints reasonably small. Allowing checkpoints to be excessively far apart neglects
the performance of large undo operations. The reason for this is because it is increases
the probability that re-execution will be necessary, and moreover increases the amount of
re-execution required.

The WUA approach easily reduces the space used for state history by 50 percent,
even with the use of small values for the Checkpoi nt Cr eat i onConst ant . With
the three programs used for the experiment discussed above, constant values ranging
from 6 to 20 were found to reduce the state history size by 75 to 90 percent (depending
on the nature of the program and the particular constant used). Larger constant values
can offer further reductions, but risk increasing the average distance between checkpoints
too greatly. As a final note, the Checkpoi nt Cr eat i onConst ant does not need to
be limited to integer values only. The general trends that were observed apply also to any

real number greater or equal to 1. O.

37

Square Root Program (889 cycles)

100,000
10-000'%4_‘ —a—e ‘w’
1,000 —
A s
100 y—
10
1 T
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value of Checkpoint Creation Constant
—e—History Size —&— Avg. Chkpnt. Dst. ‘
Swap Sort Program (10267 cycles)
1,000,000
100000'%
10,000
1,000 " " " — _ - itk — k|
A___-H_H__-_- - B B B
100 4 y
10
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Value of Checkpoint Creation Constant
—e—History Size —— Avg. Chkpnt. Dst. ‘
Naive Factor Program (31334 cycles)
10,000,000
1,000,000 'LQM.__._.
100,000 = ——————————
10,000
1,000

[3
| 3
[
'8
»
[3

100 &

10 k"_———l——-

1 T
o1 2 3 4 5 86 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21

Value of Checkpoint Creation Constant

—e—History Size —a— Avg. Chkpnt. Dst.

Figure 4.1: Effect of Checkpoint Creation Constant

CHAPTER 5
CHECKPOINT CULLING PROCESS

The techniques and issues regarding how and when to create checkpoints are
discussed in earlier chapters. While these techniques are sufficient to support reversible
debugging, the growth of the state history information remains linearly unbounded. This
chapter discusses the Checkpoint Culling Process (CCP), which is a technique used to
maintain logarithmic growth of state history information.

Should the size of the state history information consume all available space, or at
least a significant portion thereof, there are a number of obvious action that can be taken:
(1) Signal an error to the user and indicate that additional storage capacity is needed. The
user would then need to increase the capacity of the storage medium, such as main
memory, and restart the program. (2) Erase all current state history information and start
recording over from the current program position. (3) Erase some of the state history
information (such as oldest first), allowing for additional state changes to be recorded.

The third action describe above is essentially what the CCP approach does, except
it does not wait until the available space has been exhausted. The idea is analogous to
what people tend to remember. That is, people tend to forget details of events that took
place long ago, while remembering more details of recent events. With regards to
checkpoints, it is more likely that only recent checkpoints will actually ever be used.

The Checkpoint Culling Process is applied following the creation of each

checkpoint. This processes uses an algorithm that maintains recent checkpoints, but

38

39

gradually removes old checkpoints. The Checkpoint Culling Algorithm® is described in

Figure 5.1.

Al gorithm Cul | Checkpoints(C, t, z) {
/1 Cis the current set of checkpoints
/1 t is the current cycle index
/1l z is the cull rate (2, 3, 4, ...)

if (t<0) then
return
for (0<k<([lpg,t) {
low = max[0, (t - z"*) +1]
high =t - z*
Mark all checkpoints in C whose tinme index is between
| ow and high (inclusive).
Renove all marked checkpoints from C, except the one

that has the earliest tine index.
Unmar k the checkpoint that was not renpved.

Figure 5.1: Checkpoint Culling Algorithm

The Cul | Checkpoi nt s algorithm provides a logarithmic bound on the size of
the state history. The Table 5.1 shows which checkpoints would be culled out over time,
using the Cul | Checkpoi nt s algorithm with a z value of 2. 0. Larger values of z
result in a slower rate of state history growth, though increases the average distance

between culled checkpoints.

! Dr. Michael P. Frank and | formulated this algorithm in personal discussions during the
development of this thesis.

40

Table 5.1: Checkpoint Culling Algorithm for z =2

t COLUW | COLUMWN 1 | COLUWN 1| 1|

0 X X initial state checkpoint

1 XX XX Oto0

2 XXX XXX Oto0 lto1l

3 X-XX XXX Oto1l 2t02

4 [X- XXX XXXX Oto0 1to2 3to3

5 [X- X- XX IXXXX Oto1l 2t03 4to4

6 [X---XXX IXXXX Oto2 3to4 5t05

7 X---X-XX IXXXX 0to3 4to5 6t06

8 [X---X- XXX DOXXXX 0Oto0 1lto4 5t06 7t07

9 [X---X-X-XX IO Otol 2to5 6to7 8t08

10 [X- - - X- - - XXX OXXXX Oto2 3to6 7t08 9to 9

11 X -- X - - X XX IXXXXX 0to3 4to7 8to9 10to10

12 X------- X- XXX XXXXX Oto4 5t08 9t010 1lto11

13 X------- X- X- XX XOXXXX Oto5 6to9 10tol1ll 12to12

14 X------- X- - - XXX DXOXXXX Oto6 7tol0 11tol12 13t013

15 X------- X- - - X=- XX DOXXXX Oto7 8toll 12t013 14to14

16 X------- X- - - X=- XXX DOKXXX 0Oto0 1to8 9tol2 13to14 15t015
17 Ko------ X- - - X- X- XX DOKKXX Otol 2to9 10tol13 14to1l5 16to16
18 X------- X- - - X-- - XXX DOOKXX Oto2 3tol0 11tol1l4 15to16 17to17
19 X------- X---X--- XXX DOOKKXX Oto3 4tol1ll 12tol1l5 16tol17 18to 18
20 X------- Xeemmem- X- XXX DOOKKXX Oto4 5tol12 13tol1l6 17to18 19to 19
21 X------- Xeemmem- X- X- XX DOOKXXX Oto5 6tol13 14tol7 18to19 20to20
22 Ke------ Xemmmm-- X- - - XXX DOKXXX Oto6 7tol4 15t018 19t020 21lto21
23 X------- Xemmmm-- X- - - X=- XX DOKXXX Oto7 8tol5 16t019 20to21 22to22
24 [Xemmmmmmm e X- - = X= XXX IXXXXXX 0Oto8 9t016 17t020 21to22 23to23
25 [Xeocomomeeoaoo X- - - X- X- XX IOXXXX 0to9 10tol17 18to21 22t023 24t024
26 Keoooommmmaos X = = Xe = = XXX IXXXXXX 0to10 11to18 19t022 23t024 25t025
27 Xeoommmo oo X- == X- - - X= XX DOOKXXX Otoll 12t019 20to23 24to25 26to 26
28 [Xocoommmmme oo Xemmmmm X- XXX DOOKKXX 0tol1l2 13t020 21to24 25to26 27to27
29 [Xocoommmmmeaao Xemmmmm X- X- XX DOOKKXX 0to1l3 14to21 22to25 26to27 28to28
30 Xomommmm oo Xemmmm-- X- - - XXX IXXXXXX Oto14 15t022 231026 271028 291029
31 Kemmmmmmmmmmmmas Xommmm- X- - = %= XX IOKXXX Oto15 16t023 24to27 28t029 30to 30
32 Kemmmmmmmmmmamas Xemmmm-- X- - = %= XXX IOKXXXX 0to0 1to16 17t024 25t028 29t030 31to3l
33 Kemmmmmmmmmmmmas Xemmmm-- X- - = %= X- XX IOKXXXX Otol 2tol7 18t0o25 26t029 30to31 32to32

w
S

41

COLUWN | of Table 5.1 shows a diagram that represents the current set of
checkpoints created over time. A dash (-) represents a checkpoint that was removed,
while an X represents a checkpoint that has been retained. Notice that over time
(increasing values of t), new X marks are added while at certain times earlier X marks are
removed. Furthermore, in each row, the initial state checkpoint and the two previously
constructed checkpoints are always present. This suggests that some optimization can be
made by not checking to see if those checkpoints should be removed during the culling
process. COLUMN I | simply shows a graph representing the size of the state history
information over time. That is, it is the same as the previous column, except the dash
entries are removed since they do not occupy any memory. Notice that the graph grows
logarithmically. COLUWN 1 11 shows the set of low and high values calculated by the
algorithm. As specified by the algorithm, all existing checkpoints within each of these
regions are removed, except the checkpoint that occurs the earliest.

Typically, checkpoints are not created during every cycle (as suggested by Table
5.1). If the average distance between each checkpoint remains constant, then the value of
t can instead be the cycle counter. Alternatively, each checkpoint can be marked with a
static index value. For example, the first checkpoint created is marked with index 0, the
second checkpoint created is marked with index 1, the third checkpoint created is marked
with index 2, and so on. As checkpoints are removed, these index values do not changed.
With this approach, then the value of t is not a cycle index, but instead a checkpoint

index.

42

The remainder of this discussion describes the motivation behind the Checkpoint
Culling Algorithm. Let t be the current cycle index, u be the number of steps to be

undone, and f (t,u) represents the worst-case number of steps required to go backwards u

steps from cycle t. Keep in mind that, most often, u <<t . That is, the number of desired
undo cycles is much smaller than the total number of previously executed cycles. The
definition of f (t,u) depends on what state history information is available, as described
by the following four cases.

» CASE 1: No state history recorded. Since there is no state history information
available, we would need to perform re-execution in order to undo u steps. We
would start from the initial state (perhaps by resetting the environment and
reloading the program), then re-execute t —u cycles forward. Therefore, f(t,u)
iIs O(t —u). Since u <<t may mean that u = o(t), then f(t,u) =Q(t), whichisa
poor time complexity since t is often very large. On the other hand, the space

complexity is not affected in this case.
: t

(=
L e b L L

* CASE 2: Complete incremental history recording. The state changes for each
and every cycle of execution is recorded, thus we can readily reverse u steps by
applying the available state history in reverse. Therefore, f(t,u) is O(u), which
is reasonable since often u <<t. However, this case requires Q(t) space to store

the incremental state changes (see Chapter 2).
: t

il

I

HEE A EEEEEEEEEE
E

|
1
|
]
L

orowtl of state history owver time

43

» CASE 3: Complete checkpoints recorded at constant intervals. Checkpoints
are created periodically, at some relatively constant time interval. In this case,
f(t,u) is ©() . Undoing u steps involves first finding the checkpoint whose

cycle index is closest to (but does not exceed) t —u. The state is set to said
checkpoint, then we perform (at most) a constant number of steps to reach the
actual desired cycle time. While a constant time complexity is very desirable, this
technique requires Q(ts) space (where s is any checkpoint size).

| t

I b

L L L L L L L=

|

|

1

- - L

T |

» CASE 4: Checkpoints culling. Checkpoints are created as in the previous case,
but the Checkpoint Culling Algorithm is applied following the creation of each
checkpoint. This acts as a compromise between the time-inefficiency of case 1
(re-execution) and the space-inefficiency of case 2 (complete history recording).
The result is that f (t,u) is O(u) with a space complexity of O(logt).

I £

C
C
Lt b L L

The Checkpoint Culling Algorithm enforces the following invariant: there is
always at least one checkpoint between each low = (t —z*"") +1 and high =t - z* range
for all values of k (i.e. 0 <k < [Ipg, t[) . This s clear by inspecting the culling algorithm

or observing Table 5.1 (which models the execution of the algorithm).
Suppose the user desires to undo u steps (u <t) and that this invariant holds. 1fu
is less than the current number of incremental state change records, if any, then the undo

operation is O(u) as described in case 2 above. Otherwise, the undo operation requires

re-execution, which (as will be shown) also has a time complexity of O(u).

44

For any given target index r =t —u, there exist a pair of checkpoints whose time

index surrounds r. We can call these checkpoints Ciow and Chign, such that t. <r <t

= "Chigh
(where t, represents the time index of X). The number of cycles to be re-executed

would be e =r —t; <kl (for some k). Thatis, the distance from C,,, to the target

low

cycle r is always less than some constant times u, or O(u) . Figure 5.2 demonstrates

these arguments.

I 4

]
: u i
L . L — r: = =
[I I I | | IREE |] | 1
I—I—e%B LI LI s
1
i 1\ 151
==
Clow Chig’h b
=5 7 Sn T (351 En drn 3n Zn 1ln
4 = Current Cycle Index An Existing Checkpoint
B = Target Cycle Index (same as r)
2 = Necessary Be-Execution Distance to Reach r g . 1o C fed Checknoint
n = Awerage Cyocle Interwval Between Checkpoint Creation o Frewiously Lreate ScHpoln
that has been culled out
r = Target Cycle Index
|8] = 8ize of Btate History Record Vector
t = Total Execution Time of Program
u = Some User Defined Tndo Distance

Figure 5.2: State History Model With Checkpoint Culling

Clearly, the advantage of the Checkpoint Culling Algorithm is to reduce the state
history growth rate from a linear function to a logarithmic function while also keeping the
undo time linear. The runtime of the algorithm itself should not pose any significant
overhead. In the JIMS project, the algorithm was implemented such that the vector of
checkpoint needed to be scanned only once, thus a time complexity of O(n), where n is
the number of checkpoints.

State history recording generally requires a massive amount of readily available
storage space. Therefore, an asymptotic reduction in space usage generally outweighs

any corresponding sub-optimal runtime performance overhead.

CHAPTER 6
RESULTS AND ISSUES

The previous chapters of this thesis discuss a number of concepts: state history
records that record incremental changes to the state of the environment, periodic
checkpoints that record the entire state of the environment, strategies for how and when
to create checkpoints, and an algorithm that reduces the size of recorded state history.

All of these concepts can be applied together to provide an environment that efficiently
supports reversible execution, and thus reversible debugging.

The use of state history records allows programs to be executed in reverse at
nearly the same speed that they are executed forward. However, state history records
rapidly consume memory space. In addition, to be of any use, incremental state history
records must be generated for each executed cycle, which thus reduces normal forward
execution performance (due to the overhead of creating and storing state history records).

For the most part, state change records and checkpoints are independent concepts.
That is, one might choose to use either strategy (one or the other) or both strategies
together to implement reversible execution. If only checkpoints are used, then re-
execution will always be necessary in order to perform reversible execution. If only state
change records are used, then the growth rate of state history information will likely be
too rapid to support programs for any useful amount of runtime.

The use of both state change records and checkpoints in the same environment
combines the advantages and disadvantages of both concepts. That is, the growth rate of

state history is reduced, and relatively small undo operations do not require re-execution.

45

46

However, the growth rate remains linear, and relatively large undo operations will require
re-execution. The checkpoint culling process can greatly reduce the space usage of state
history information. But the issues related to re-execution require special attention,

which is discussed later in this chapter.

State History Growth Statistics

In order to demonstrate the growth of state history, using the techniques described
in this thesis, the three sample programs described in Chapter 4 were used to construct
Figure 6.1. Each program was executed forward some constant number of steps. At the
end of each step, the current size of the state history was recorded. This allows us to
examine the growth of the state history over time.

For all three programs, both checkpoints and state change records were recorded,
and the Checkpoint Culling Algorithm was applied. The SORT program performs mostly
memory references, unlike the other two programs. As a result, it has a larger state
history. For the SQRT program, a Checkpoint Creation Constant of 2. O was used (see
Chapter 4), while a constant of 5. 0 was used for SORT and FACTCR

The use of checkpoints causes the jagged growth of state history. That is, a
sudden reduction in the size of the state history indicates when a checkpoint was created.
However, notice that the peaks in each graph indicate a general logarithmic growth
pattern. This is due to the Checkpoint Culling Algorithm, which gradually removes older
checkpoints.

The data for these graphs was produced using JIMS Release 1, which stores state
history as a sequence of ASCII characters. Using binary encoded sequences instead, the

general state history byte size would be easily reduced by as much as 50 percent.

Byte Size of State History Over Time (SQRT program)

> 11000
]
2 9000
T @ 7000
» & 5000
§ 3000
? 1000
10 110 210 310 410 510 610 710 810
Cycle Index
‘—Byte Size of State History ‘
Byte Size of State History Over Time (SORT program)
> 19000
i)
o
E Z 14000
85
22 9000
o
GN)
%) 4000
100 1100 2100 3100 4100 5100 6100 7100 8100 9100 10100
Cycle Index
‘—Byte Size of State History ‘
Byte Size of State History Over Time (FACTOR program)
> 9000
S 8500
.% 8000
3 g 7500
T < 7000
ﬁ’_’ £ 6500
3 6000
N 5500
? 5000

— M O N~ O «=H o™ 1o N~ O
- & =< =€ <=HS N N N N N om

M O N~ o

Cycle Index (x1000)

‘— Byte Size of State History ‘

Figure 6.1: State History Growth Statistics Using JIMS

48

Re-Execution Issues

As mentioned earlier, there are several issues to be considered when performing
re-execution [13]. During re-execution, the user would typically expect the program to
behave as it did the last time the program text was executed (all things being the same).
However, as an example of a common problem, suppose that the current state history is

as shown in Figure 6.2.

3TATE HIZTORY

CHEPHT @ O

CHEFNT @ 100

CHEPNT @ 150

EECORED @ 151

RECCED [152

RECCRD [153

Figure 6.2: Sample State History

That is, three checkpoints were created during cycle 0, 100, and 150. Three state
change records were created following the last checkpoint, during cycle 151, 152, and
153. The current cycle is 154. Suppose the user desired to revert back to cycle 120 (or,
in other words, requested reverse execution of 34 cycles). Using the information
available from state history, one would first apply the state recorded in the second
checkpoint (created during cycle 100), and then perform 19 cycles of forward execution

(i.e. re-execution) such that the current cycle becomes 120 as desired by the user.

49

So long as the program is deterministic, re-execution is acceptable. Moreover, in
the example described above, only 19 cycles had to be re-executed forward instead of 34
cycles in reverse. The problem of re-execution arise when re-executing non-deterministic
program text. Suppose, for example, that during cycle 110 the program requested some
input whose value affected the control flow of the program. In order to properly return to
cycle 120 (as the user had last experienced it), the process of re-execution must ensure
that (at least) all input is the same as during the original execution of those cycles (in this
case, cycle 101 through 119).

One way to alleviate this problem is to use state change records exclusively,
without checkpoints. In doing so, the user can then truly perform reverse execution, and
re-execution is never necessary. Of course, if only state change records are used, then the
memory system must have enormous capacity (refer to Figure 2.6).

There are several other feasible solutions to the problem of re-execution. One
could ignore the problem altogether, and simply require that the user manually re-specify
any input. While acceptable for some user-controlled input (such as from a keyboard),
some input is not within the control of the user (for instance, a temperature probe that is
used to periodically polled for the current temperature). Another solution might be to use
a separate vector to record all input into the system. When the program is re-executed, it
retrieves input from the input vector, rather than the environment. The primary drawback
to this solution is that it is proprietary and requires knowledge of what the inputs of the
system are. For debugging purposes, however, one might be able to define a limited set

of inputs to be recorded during that particular debugging sessions.

50

One other solution might be to give the user some control, or full manual control,
over when state change records and checkpoints are used. Once the user has identified a
region where reversible execution would be useful, the user could specify that only state
change records be used during that region of the programs execution. This might require
that the entire program (or portions thereof) to be executed multiple times. In addition,
this approach might only be feasible at the application level, such as within a debugging

application.

Irreversible Effects

For the purpose of this thesis, the term state variable has been used in reference to
internal state variables (such as CPU registers, memory cells, internal flags, etc.). State
variables might also include the contents of a disk, cache memory, or state variables of
associated coprocessors. At the operating system level, state variables might consist of
various tables (process table, open file table, etc.) and numerous internal global variables.

By recording the changes to the value of these variables, it is then assumed that
reversible execution can be performed by re-applying past values to state variables in the
reverse order that the values were recorded. However, this assumes that the state
variables can be both read and written, which is not always the case. For example,
certain regions of main memory might be read-only some of the time, or a certain address
can only be written under certain circumstances. As a result, some sequences of
instructions cannot be reversed. There is no practical and general solution to this
problem. However, there are several ways to elude the problem. Three potential

solutions are mentioned in the following discussion.

51

Reverting to an earlier checkpoint, and therefore bypassing the sequence of
irreversible instructions, is one possible solution. Obviously the state of the environment
is not truly reversed. Moreover, re-executing from a checkpoint may cause stuttering
[14] (i.e. same output repeated multiple times). This solution can probably only be
implemented at the application level, which can predict upcoming events that cannot be
reversed (and thus create checkpoints as necessary).

A second solution might be to use a virtual environment. A software simulation
of an environment can ignore or alter certain aspects of its real world counterpart. For
example, a virtual printer could be used, which could allow the contents of a printed page
to be undone. Or, as a more practical example, a CPU simulator could allow normally
read-only state variables to be both read and write. This solution might be viable for
some situations, but obviously the development cost of a simulator can be expensive (in
terms of time, manpower, etc.) such as to negate their benefit.

The final solution mentioned here is, as described earlier in this chapter, to record
all input. During re-execution, all input is read from the recorded input buffer, and all
output is only pretended to be sent (that is, during re-execution, any output is not actually
sent since it is assumed to have already been sent). The amount of input can be
enormous, especially when considering common serial input devices (e.g. a mouse) and
network communication. Some compromise must be made as to what input is recorded,
since it does not appear to be practical to record all the input of the environment. As with
re-execution discussed earlier, this solution is proprietary since both the inputs and

outputs must be known beforehand (or somehow determined otherwise).

CHAPTER 7
CONCLUSION AND FUTURE WORK

The content of this thesis has described some techniques for, and issues related to,
state history recording. These techniques are intended to facilitate reversible debugging,
and to be applied at the hardware level or either the kernel or user level of the operating
system, or in hardware simulators.

Reversible debugging has numerous applications and is an idea that has been
considered for some time [15]. While inherent reversibility of instructions seems
plausible, such as by using a reversible instruction set, unraveling the input of a system is
more difficult. As such, state history recording (or history logging) is currently a much
more popular means of supporting reversible execution.

A primitive example of state history recording is the use of tape-back up systems.
Should the current data somehow become corrupted, one can restore the data from a copy
made the day before. Most tape-back up systems copy the entire contents of a large data
storage device, similar to a checkpoint recording the entire state of the environment.
Some back up systems are clever enough to record only incremental changes to the data,
by recording only those files whose date and/or file size differ from the previous copy
made of that file.

Many concepts of the tape-back up process can be applied to state history

recording. However, there is at least one fundamental difference: state history recording

52

53

must be performed in real time, such as not to hinder the normal performance of the
system. | surmise that reversible computing has not been extensively applied in the past
for the following reason: history recording is both computationally and spatially
expensive, and computers of the past could not afford to spend processing and storage
resources for this purpose..

Modern computers have much greater computational ability, much lower memory
access latency, and much greater memory capacity than those of even one decade ago.
This trend seems likely to continue for some time. As a result, it does appear that state
history recording can be applied on modern computer systems such that its benefit
outweighs the associated performance and space-usage penalty.

The techniques described in the previous chapters of this thesis are sufficient for
supporting reversible debugging using state history recording. However, due to time
constraints, there were several additional ideas considered that were not fully explored
for this project. The rest of this chapter briefly describes some of these additional ideas

that were considered.

Checkpoint Deltas

One idea that was mentioned was that checkpoints could record only the state
variables modified since the previous checkpoint (rather than having each checkpoint
record the entire state). We could call these checkpoint deltas. While this should
significantly reduce the size of checkpoints, this approach seems to preclude the use of
the Checkpoint Culling Algorithm (since if checkpoint N is removed, then checkpoint

N+1 might not correctly represent all the deltas since checkpoint N-1).

54

However, suppose checkpoint deltas were used. Rather than culling out old
checkpoints, old checkpoints could instead be merged with newer checkpoints. That is,
the same Checkpoint Culling Algorithm could be used. But instead of deleting an old
checkpoint, it merges the state values recorded in the culled checkpoint with the
subsequent checkpoint. That is, all state values of checkpoint N are copied into
checkpoint N+1, except for the state values already recorded in checkpoint N+1. This
should save some space by allowing both checkpoint deltas and the Checkpoint Culling
Algorithm to be used. However, when setting the state to that of a checkpoint, it is still

necessary to apply each checkpoint in sequence from the initial state checkpoint.

Reverse Checkpoint Deltas

An extension to the idea of checkpoint deltas is reverse checkpoint deltas. That
is, when a checkpoint is created, it is initially empty. Then, when any state variable is
modified whose old value is not already recorded in the checkpoint, that state variable
and its value are then recorded in the checkpoint. Eventually a new checkpoint (N+1) is
created and then the earlier checkpoint (N) is no longer modified. However, if
checkpoint N+1 is culled, all its changes are propagated backwards to checkpoint N.
Then, to go back to an earlier checkpoint state, one applies checkpoints in reverse from

the current state rather than from the initial state.

Circular State Change Record Buffer

Another idea, which was briefly mentioned in Chapter 2, is the use of a circular
state change record buffer (rather than a stack). It is worth mentioning here again, since
it was not implemented in JIMS Release 1. The idea is that when a checkpoint is created,

the current set of state change records is not deleted. Instead, any new state change

55

record simply replaces the oldest state change record. This idea helps in greatly
improving the run time of some undo operations. Suppose that just after the creation of a
checkpoint, the user desired to undo only one or two instructions (i.e. to return to the state
just before the creation of the checkpoint). If all the state change records had been
deleted following the creation of the checkpoint, then we would need to revert to some
earlier checkpoint, and re-executed forward. If we had instead used a circular buffer for
the state change records, then any small undo request could be performed immediately

without re-execution.

Alternative Checkpoint Creation Decision

The WUA approach described in Chapter 4 seems adaptive to different types of
programs, since it considers the size of the state change record buffer and next checkpoint
of the currently running program. However, this decision algorithm might benefit from
more careful consideration. An alternative way of deciding when to create checkpoint is
suggested as follows: create a checkpoint when the size of the state change records
becomes greater than or equal the total size of all existing checkpoints (by some constant
factor). The motivation is that it is only necessary to compress state change records when
they become a significant fraction of total state history space usage. In addition, this
would eliminate the need to estimate the size of the next checkpoint (as currently required

by the WUA approach).

Case Studies

The final suggestion for future work would be to perform case studies that
investigate the use of the undo operation. For example, obtaining statistics showing the

average distance of undo requested, or observing in what situations the undo feature is

56

most often used. This would help us to make a better decision of when to create
checkpoints, as well as encourage future developers (of operating systems, compilers,

debuggers) or hardware designers to consider implementing reversible execution.

APPENDIX
JAVA IMPLEMENTATION OF MIPS SIMULATOR (J.I1.M.S.)

The JIMS project includes a MIPS assembler and simulator, and is primarily
intended for academic use. JIMS was developed with the following criteria in mind:
* Implemented in Java, for modern portability reasons.

» Model the instruction set of an R2000/R3000 MIPS microprocessor, which is very
well known in both academia and industry.

» Use state history recording to support reversible execution, for academic research
purposes.

The content of this appendix includes various notes regarding the implementation
and functionality of JIMS Release 1. At the time of this writing, JIMS is a work-in-

progress project. However, the Release 1 version of JIMS does satisfy the criteria listed

above.
Three sources were instrumental during the development of JIMS [16,17]:
e “Computer Organization & Design: The Hardware/Software Interface” by David A. Patterson and
John L. Hennessy (Morgan Kaufmann Publishers, Inc., 1998)

e “See MIPS Run” by Dominic Sweetman (Morgan Kaufmann Publishers, Inc., 1999)
* The pcSPIM simulator by James R. Larus (archive available at ftp://ftp.cs.wisc.edu/pub/spim)

The MIPS Assembler

MIPSAZSM

Azzembler

DirectiveProcessor |InstructionEncoder

TextSection | DataSection

TextEntry DataEntry
Utility

LabelEntry

Figure A.1: Layout of JIMS Assembler Source Code

57

58

Figure A.1 shows the abstract layout of the JIMS Assembler source, which is

organized into five layers. The top layer, which includes only M PSASM is the user

interface layer. The second layer, consisting of the Assenbl er module, only

coordinates the assembly process using the lower layers. The third layer includes the

primary processing modules, Di r ect i vePr ocessor and | nstructi onEncoder,

which perform the actual work of translating the assembly code into MIPS machine code.

Supported Directives

The follow is a list of assembly directives supported by JIMS Release 1:

NAME AND PARAMTERS

LASClII “stringl”(,”string2”, .,"stringN")
.ASCI 1 Z “stringl”(,”string2”, .,"stringN’")
.BYTE bi(, b2, ..,bN)

.DATA ([address])

. DOUBLE d1(, d2, .., dN)

CFLOAT f1(,f2, ..fN)

JHALF hi(, h2, .., hN)

. KDATA ([address])

. KTEXT ([address])

. SET [at] | [noat]

.SPACE [n]

.TEXT ([address])

CWORD wA(, w2, .., WN)

DESCRI PTI ON
Define a sequence of character strings,
starting at the current data address.

Define a sequence of null term nated
character strings, starting at the current
dat a address.

Defi ne sequence of bytes (8-bit sequence),
starting at the current data address.

Set the current npbde to Program Data. Use
the address if specified, otherw se resune
fromthe last or default data address.

Defi ne sequence of doubles (64-bit
sequence), starting at the current data
addr ess.

Defi ne sequence of floats (32-bit sequence),
starting at the current data address.

Defi ne sequence of halfs (16-bit sequence),
starting at the current data address.

Set the current node to Kernel Data. Use
the address if specified, otherw se resune
fromthe last or default kdata address.

Set the current node to Kernel Text. Use
the address if specified, otherw se resune
fromthe last or default ktext address.

Toggl e war ni ng about the use of the $at
(assenbl er tenporary) register during
assenbl y.

Define a sequence of n nulls,
the current data address.

starting from

Set the current npbde to Program Text. Use
the address if specified, otherw se resune
fromthe last or default text address.

Define a sequence of words (32-bit
sequence), starting at the current data
addr ess.

59

The . ALI GNdirective has not been implemented for Release 1. However, at the

same time, misaligned memory access is not yet considered as an exception by the

simulator. In addition, the . EXTERN and . GLOBL directives are not supported and are

ignored when encountered.

Supported Instructions

Below is a list of the instructions supported by the JIMS assembler and simulator,

which includes most of the standard set of MIPS instructions. The semantics of some

instructions is included in the associated description. Supported pseudo instructions are

also listed:

I NSTRUCTI ON AND PARAMETERS

RFE

SYSCALL n

BREAK

MFHI rd

MFLO rd

MIHI rs

MILO rs

J tar get

JAL target
JALR rs,rd

JR rs

Dl V rs,rt

DI VU rs,rt

MULT rs,rt
MULTU rs,rt

ADDI rt,rs,imm
ADDI U rt,rs,imm
ANDI rt,rs,imm
ORI rt,rs,imm
XORI rs,rt,imm
LU rt,imm
SLTI rt,rs,imm
SLTIU rt,rs,imm
BCOT | abel

BC1T | abel

BCOF | abel

BC1F | abel

BEQ rs,rt, | abel
BCEZ rs, | abel
BGEZAL rs, | abel
BGTZ rs, | abel
BLEZ rs, | abel
BLTZAL rs, | abel
BLTZ rs, | abel
BNE rs,rt, | abel
LB rt, address
LBU rt, address
LH rt, address
LHU rt, address
LW rt, address
LWCO rt, address
LWC1 rt, address

DESCRI PTI ON (semanti c)

Ret urn From Exception

Perform System Call n (see bel ow for val ues of n)
Cause Break Exception

Move fromH (reg[rd] $hi)

Move from LO (reg[rd] $l 0)

Move to H ($hi = reg[rs])

Move to LO ($lo = reg[rs])

Junp ($pc = addr[target])

Junp and Link ($ra = $pc + 4, $pc = addr[target])
Junp and Link Register (reg[rd] = $pc + 4, $pc = reg[rs])
Junp Register ($pc = reg[rs])

Divide ($lo = reg[rs]/reg[rt], $hi = reg[rs]%eg[rt])
Di vi de Unsi gned

Multiply (x = reg[rs]*reg[rt], $hi = high[x], $lo = lowx])
Mul tiply Unsigned

Add | medi ate (reg[rt] =reg[rs] + inmm

Add | medi at e Unsi gned

AND | nmedi ate (reg[rt] = reg[rs] & inmm

OR Imedi ate (reg[rt] =reg[rt] | imm

XOR I nmrediate (reg[rt] = reg[rt] ~ inm

Load Upper Immediate (upper[reg[rt]] = lower[immj)
Set Less Than Immediate (reg[rt] = reg[rs] < im
Set Less Than | mmedi ate Unsi gned

Branch Coprocessor 0 True

Branch Coprocessor 1 True

Branch Coprocessor 0 Fal se

Branch Coprocessor 1 Fal se

Branch on Equal (if reg[rs] == reg[rt] goto I|abel)
Branch on Greater Than or Equal Zero

Branch Greater Than or Equal and Link

Branch Greater Than Zero

Branch Less Than or Equal Zero

Branch Less Than Zero and Link

Branch Less Than Zero

Branch Not Equal Zero (if reg[rs] !=reg[rt] goto |abel)
Load Byte (reg[rt] = byte[address])

Load Byte Unsigned

Load Hal fword (reg[rt] = hal fword[address])

Load Hal fword Unsi gned

Load Word (reg[rt] = word[address])

Load Word Coprocessor 0

Load Word Coprocessor 1

60

LWL rt, address Load Word Left

LVR rt, address Load Wrd R ght

SB rt, address Store Byte (byte[address] = reg[rt])

SH rt, address Store Hal fword (hal fword[address] = reg[rt])
SW rt, address Store Wird (word[address] = reg[rt])

SWC0 rt, address Store Word Coprocessor 0

SWC1 rt, address Store Word Coprocessor 1

SW rt, address Store Word Left

SVIR rt, address Store Wrd Ri ght

MFCO rt,rd Move From Coprocessor 0O

MFC1 rt,rd Move From Coprocessor 1

MrCO rd, rt Move To Coprocessor O

Mrc1 rd, rt Move To Coprocessor 1

CEQD fs,ft Conpar e Equal Doubl e

CEQS fs,ft Conpar e Equal Single

C LE D fs,ft Conpare Less Than or Equal Doubl e

C LES fs,ft Conpare Less Than or Equal Single

C.LT.D fs,ft Conpare Less Than Doubl e

C.LT.S fs,ft Conpare Less Than Single

ADD rd,rs,rt Addition (reg[rd] = reg[rs] + reg[rt])

ADDU rd,rs,rt Addi tion Unsi gned

AND rd, rs,rt Logical AND (reg[rd] = reg[rs] ®[rt])
NOR rd, rs,rt Logical NOR (reg[rd] = ~(reg[rs] | reg[rt]))
OR rd, rs,rt Logical OR (reg[rd] = reg[rs] | reg[rt])

SLL rd, rt, shant Shift Left Logical (reg[rd] = reg[rt] << shant)
SLLV rd,rt,rs Shift Left Logical Variable (reg[rd] = reg[rt] << reg[rs])
SRA rd, rt, shant Shift Right Arithmetic (reg[rd] = reg[rt] >>> shant)
SRAV rd, rt,rs Shift Right Arithnetic Variable

SRL rd, rt, shant Shift Right Logical (reg[rd] = reg[rt] >> shant)
SRLV rd,rt,rs Shift Right Logical Variable

SUB rd, rs,rt Subtract (reg[rd] = reg[rs] — reg[rt])

SUBU rd,rs,rt Subt ract Unsi gned

XOR rd,rs,rt Logi cal Exclusive OR (reg[rd] = reg[rs] ~ reg[rt])
SLT rd,rs,rt Set Less Than (reg[rd] = (reg[rs] < reg[rt]))
SLTU rd, rs,rt Set Less Than Unsi gned

ABS. D fd,fs Absol ute Value Double (reg[fd] = |reg[fs]])
ABS. S fd, fs Absol ute Val ue Single

ADD. D fd,fs,ft Addi tion Double (reg[fd] = reg[fs] + reg[rt])
ADD. S fd,fs, ft Addi tion Single

CVT.D.S fd,fs Convert Single to Double

CVT.D.W fd,rs Convert Word to Doubl e

CVT.S.D fd,fs Convert Double to Single

CVT.S.W fd,rs Convert Word to Single

CVT.WD rd,fs Convert Double to Word

CVT.WS rd,fs Convert Single to Wrd

D V.D fd,fs,ft Di vi de Doubl e

DV.S fd,fs, ft Di vide Single

MOV. D fd,fs Move Double (reg[rd] = reg[fs])

MOV. S fd, fs Move Single

MJL. D fd,fs,ft Mil tiply Double (reg[rd] = reg[rs] * reg[rt])
MIL. S fd,fs,ft Miltiply Single

NEG D fd,fs Negate Double (reg[rd] = ~reg[rs])

NEG S fd,fs Negate Single

SUB. D fd,fs,ft Subtract Double (reg[fd] = reg[fs] — reg[ft])
SUB. S fd,fs,ft Subtract Single

PSEUDO | NSTRUCTI ONS

NOP No Operation

DV rdest,rsrcl, rsrc2 Divide (reg[rdest] = reg[rsrcl] / reg[rsrc2])
DI VU rdest,rsrcl, rsrc2 Di vi de Unsi gned

ABS rdest,rsrc Absol ute Value (reg[rdest] = |reg[rsrc]]|)
MUL rdest,rsrcl, rsrc2 Miltiply (reg[rdest] = reg[rsrcl] * reg[rsrc2])
MJULO rdest,rsrcl, rsrc2 Miul tiply Overl oad

MJLOU rdest,rsrcl, rsrc2 Mil tiply Overload Unsigned

NEG rdest,rsrc Negate (reg[rdest] = -reg[rsrc])

NEGU rdest,rsrc Negat e Unsi gned

NOT rdest,rsrc Logical NOT (reg[rdest] = ~reg[rsrc])

ROL rdest,rsrcl, rsrc2 Rotate Left

ROR rdest,rsrcl,rsrc2 Rot at e Ri ght

LI rdest,imm Load I nmedi ate (reg[rdest] = inmm

SEQ rdest,rsrcl, rsrc2 Set |f Equal

61

SEQ rdest,rsrcl,imm Set |f Equal | mmediate

SGE rdest,rsrcl, rsrc2 Set |f Greater Than or Equal

SGEU rdest,rsrcl, rsrc2 Set |f Greater Than or Equal Unsigned
SGT rdest,rsrcl, rsrc2 Set |If Geater Than

SGTU rdest,rsrcl, rsrc2 Set |f Greater Than Unsigned

SLE rdest,rsrcl,rsrc2 Set |If Less Than or Equal

SLEU rdest,rsrcl, rsrc2 Set |If Less Than or Equal Unsigned
SNE rdest,rsrcl, rsrc2 Set |If Not Equal

SNEI rdest,rsrcl,imm Set |If Not Equal | mmmediate

B | abel Branch

BEQZ rsrc, | abel Branch | f Equal Zero

BGE rsrcl, rsrc2, | abel Branch If G eater Than or Equal

BGEU rsrcl, rsrc2, | abel Branch |If Geater Than or Equal Unsigned
BGT rsrcl, rsrc2, | abel Branch |If G eater Than

BGTU rsrcl, rsrc2, | abel Branch If Greater Than Unsigned

BLE rsrcl, rsrc2, | abel Branch I f Less Than or Equal

BLEU rsrcl, rsrc2, | abel Branch If Less Than or Equal Unsigned
BLT rsrcl, rsrc2, | abel Branch If Less Than

BLTU rsrcl, rsrc2, | abel Branch if Less Than Unsi gned

BNEZ rsrc, | abel Branch Not Equal Zero

LA rdest, addr ess Load Address

MOVE rdest,rsrc Move

L.D f dest, address Load Doubl e

L.S f dest, address Load Single

S.D f dest, address St ore Doubl e

S. S f dest, address Store Single

For reference, System Call Paraneter are provided bel ow (systemcall paraneter specified
in register $v0):

DESCRI PTI ON
Print Integer Stored in Register $a0
Print Float Stored in Register $f12
Print Double Stored in Register $f12
Print String Starting at Menory Address Specified by Register $a0
Read Integer, Store in Register $vO
Read Float, Store in Register $f0
Read Double, Store in Register $f1l
Read String, Store in Buffer Starting at Address $a0 of Length $al
System Break (not supported in Rel easel)
0 Exit Program (used to specify the end of the current progran

POO~NOUDMWNES

The Assembly Process

The assembly process typically requires multiple passes. If any labels are
defined, then two passes are required. If any pseudo or synthetic instructions are used,
then two passes are also required. Most programs use both labels and pseudo/synthetic
instructions. Among other benefits, labels are used to give assembly programs much
greater clarity. The pseudo instructions are as listed above, and are essentially macros
that represent a sequence of more fundamental instructions. Synthetic instructions,
however, are more difficult to explain.

Synthetic instructions are inserted into the program during the assembly process.

They are intended to correct assembly code that is otherwise incorrect or meaningless. A

62

typical example is the use of the LW(Load Word) instruction. Often, assembly code
includes an instruction such as “LW $t 0, x”, where it is intended to load register $t O
with the value at the memory address designated by label x. However, used in this form,
the LWinstruction can only load from the first 16-bit region of the address space (that is,
$0000 to $FFFF). Typically, program data does not reside in this region. More than
likely, the label x refers to some 32-bit address. To resolve the problem, the assembler

can use a synthetic instruction and modify the specified LWinstruction as follows:

LU $at, hi16(x)
LW$t0, |ol16(x)(S$at)

While both pseudo and synthetic instructions provide tremendous convenience for
programmers, inserting instructions increases the distance between labels. As a result,
jump targets and branch distances can be difficult to pre-determine. This is another
motivation for the use of labels, which allow the assembler to automatically determine
this information using two passes. The first pass translates any pseudo instructions and
inserts any necessary synthetic instructions. At the same time, symbolic assembly
instruction are converted into their machine code form. Literal label and target addresses
are determined during the second pass, and instructions that use these labels are translated
into their final machine code form. The final machine code form is then output to a file,
to be used by the simulator.

The JIMS assembler uses a proprietary object code format, which is easier for
debugging purposes. One can readily view the object code and verify manually if it is

correct or not. This format is described in a separate document associated with JIMS.

63

Sample MIPS Programs

This section includes two sample MIPS programs: SQRT. S (square root finding
program) and FACTOR. S (naive factoring program). These programs, among many
others, were used as test programs during the development of JIMS.

SQRT.S

Square root finding program

doubl e DELTA = 1. 0E-8;
doubl e n = nunber to find square root of
doubl e guess = initial guess; (x / 2.0)
while (true) {
if (abs(n-guess”™2) <= DELTA))
br eak;
out put guess
guess = 0.5 * (n / guess + guess)

HHEHEE RS W
—

out put sqrt(n) == guess

.data 0x10000000
n == the nunber you want to find the square root of
: . doubl e 999435678123443. 5
DELTA == the ampbunt of desired precision (larger value
is |less precise, but faster)
DELTA: . doubl e 0.00000001

H IO H

guess == the initial guess, then holds the final guess
guess: .double 0.0

two == constant used during the initial guess

t wo: .double 2.0

half == constant used when cal cul ati ng the next guess
hal f: .double 0.5

sonme user friendly output strings

nline: .asciiz "\n"

final: .asciiz "\nThe sqgrt is "

. text 0x00400000

mai n
I.d $f0, n # $f0 =n
l.d $f2, two # $f2 = 2.0
I.d $f6, DELTA # $f6 = DELTA
I.d $f 10, hal f # $f10 = 0.5

prepare the initial guess (store at MEM guess])
div.d $f8, $f0, $f2 # $f8 = $f0/ $f2 == (n / 2.0)
th

s.d $f 8, guess # $f8 e initial guess
I.d $f 14, guess # $f 14 = previ ous guess
I.d $f 4, guess # let $f4 = current guess

| oop

Performthe guard of the while |oop: abs(n-guess”"2) <= DELTA

1) square the guess
mul.d $f4, $f4, $f4 # $f4 = $f4 * $f4 == guess”2

2) n - guess”2
sub.d $f4, $f0, $f4 # $f4

$f0 - $f4 == (n - guess”2)

64

3) abs result

abs.d $f4, $f4 # $f4 = abs($f4) == abs(n-guess”2)
4) result > DELTA

c.le.d $f4, $f6 # if (abs(n-guess”2) <= DELTA))

bc1t done
Qut put the guess

I.d $f 12, guess # reg[$f 12] == double to print

li $v0, 3 # 3 == print double

syscal

adj ust the val ue of guess
1) (n/guess)
div.d $f4, $f0, $f8 # $f4

2) (n/guess) + guess

add.d $f4, $f4, $f8 # $f4 = $f4 + $f8 == (n/guess) + guess
3) (n/guess)+guess * 0.5

mul.d $f4, $f4, $f10 # $f4 = $f4 * $f10 == (n/guess)+guess * 0.5
4) store the guess

H H#*

$f0 / $f8 == (n/guess)

s.d $f 4, guess # guess = $f4 (the new guess)
I.d $f 8, guess # let $f8 == copy of new guess
c.eq.d $f8, $f14 # if new guess == old guess, exit
bc1t done
l.d $f 14, guess # set the old guess to the new guess
j | oop
done
output the final guess
li $v0, 4 # 4 == print string
la $a0, fina
syscal
I.d $f 12, guess # reg[$f 12] == double to print
li $v0, 3 # 3 == print double
syscal
mul . d $f12, $f12, $f12 # $f12 = $f12 * $f12 == answer ~ 2
li $v0, 3 # 3 == print double
syscal
li $v0, 10
syscal
FACTOR.S

Very-H ghl y-Nai ve Factoring Al gorithm
int n = integer;
for (int x = 0; x <= (n/2); x++) {

for (int y =0; y <=n; y++) {
if (x *y ==n)
Systemout.printin(x +" " +vy);
}
}
#}
.data
n: .word 100
space: .asciiz " "
nline: .asciiz "\n"
. text 0x00400000
mai n

I'w $t7, n # let reg[$t7] == n (nunber to factor)

prepare outter-1oop

outter:

prepare inner-I|oop

i nner:

print

ski p:

done

li $t0, O

nove $t1, $t7

div $t1, $t1, 2
bgt $t0, $t1, done
li $t2, 0

nove $t3, $t7

mul $t4, $t0, $t2
bne $t4, $t7, skip
x and y

nove $a0, $tO

li $vO, 1

syscal

la $a0, space

li $vo, 4

syscal

nove $a0, $t2

li $vo, 1

syscal

la $a0, nline

li $vo, 4

syscal

addi $t2, $t2, 1

bl e $t2, $t3, inner
addi $t0, $to, 1

j outter

li $v0, 10

syscal

#
#
#

#
#

#

#

65

let reg[$t0]
$t1 = $t7 ==
let $t1 == (n/2)

let reg[$t2]
let $t3 = $t7 ==

let $t4 = $t0 * $t2

print $t0 (==x)

print a space
print

$t2 (==y)

print a nline

y++

X++

exit

The MIPS Simulator

X *y

== x (outter |oop variable)

==y (inner |oop variable)

USER INTERFACE

CommandProcessor

CommandResultBuffer

Command

InvalidCounmandUseException

ADD CHECKPOINT|EXIT|GET|HELP|HISTORY|INPUT|LIST‘LOAD|OUTPUT|REMOVE‘RESET|RUN|SET|STATUS|STEP

UNDO

Simulator

SimulatorException

)) GuardList StateHistoryBuffer
BreakpointList - - State
GuardExpression CheckpeintBuffer
RegisterFile
InstructionDecoder IDE InstructionExecuter MainMemory Coprocessorl
Coprocessorl

Utility

IDE = InstructionlDecodeBuffer

Figure A.2: Layout of JIMS Simulator Source Code

66

The abstract layout of the JIMS Simulator source is shown in Figure A.2. The
simulator is organized into eight total layers, however these layers can be described as
three sets of domains: (1) The User Interface Domain, which is represented only by the
top layer of the JIMS Simulator source. (2) The Command Interface Domain,
represented by layers 2, 3, and 4 of the simulator source. (3) the Simulator Domain,
represented by all of the remaining layers (5 through 8) of the simulator source.

The Command Interface Domain provides a standard interface between the
simulator and the user interface. The command interface provides a well-defined
protocol that allows the user interface to treat the simulator as a server. The benefit of
this organization is that multiple user interfaces can be developed, without requiring any
changes to the Simulator Domain. Alternatively, one can ignore the Command Interface
Domain completely, and develop a user interface that manages the simulator directly.
Generally this would be done for performance reasons. However, the user interface and
simulator core source would be tightly coupled together. The User Interface and
Command Interface Domain are both described in a separate document. For our
purposes, we focus on the Simulator Domain.

The Simulator Core

The simulator core consists of the bottom four layers of Figure A.2. The bottom
layer, Ut i | i ty, simply contains various useful functions that do not need to be
discussed. The more interesting portions of the simulator are discussed as follows.

The I nstructi onDecoder and | nstructi onExecut er are, as should be
obvious, used to decode and execute instructions. The instruction decoder simply

retrieves the instruction at the current program counter, then extracts all the possible data

67

contained in the instruction (opcode, function code, source register, destination register,
shift amount, etc.). This datais stored inan | nstructi onDecodeBuf f er which is
later sent to the | nst ruct i onExecut er during the execution stage.

For the most part, the Si mul at or layer is responsible for managing state change
records and checkpoints (such as determining when to create a checkpoint, etc.). The
state history data itself is actually stored in the St at eHi st or yBuf f er and
Checkpoi nt Buf f er modules. However, the Si mul at or does not modify state
values directly.

All state values are guarded by the St at e sub-layer. As a result, the
Si mul at or actually makes a request to change a state value by using the St at e layer.
The request is always granted, however this policy allows the St at e layer itself to
record all changes in state values, which facilitates the creation of state records (used for
state history recording). For JIMS, state values include main memory, registers, and the
registers of coprocessor 0 and coprocessor 1 (which are each represented accordingly as
separate modules below the St at e layer).

Highlights of Simulator Source Regarding State History Recording

The remainder of this appendix includes highlights of the main Si nul at or
source code. These highlights demonstrate the implementation of the reversible
execution feature of JIMS. The functions highlighted, followed by a brief description,
are as follows:

* perfornmCycl e(): Used to perform one cycle of execution for the JIMS simulator. Notice that
the check that determines if a checkpoint should be created is near the beginning of this function.
Furthermore, notice how the state change record is handled at the end of the function.

* bTi meToMakeCheckpoi nt () : Uses the WUA approach described in Chapter 4 to determine
if a checkpoint should be created during the current cycle.

 makeCheckpoi nt () : A wrapper for the doCreateCheckpoint(), though notice the steps that are
done following the creation of the checkpoint.

68

* | Get Next Checkpoi nt Byt eSi ze() : Estimates the size of the next checkpoint, as described
in Chapter 3.

* doCreat eCheckpoi nt () : Performs the actual work of creating a checkpoint. Notice how the
code is very similar to the iGetNextCheckpointByteSize() function.

» perforntCheckpoint Cul I i ng(): Applesthe Checkpoint Culling Algorithm to the current
set of checkpoints.

* i Perfornmndo(l ong | UndoDi st ance) : Shows how state change records, checkpoints,
and re-execution are all used together to provide reversible execution.

private void perfornCycle() throws SimulatorException {

/1 This is the primary nmethod responsible for sinulating
1 the CPU cycles. This method should only be called

11 fromthe i PerfornStep(int) method.

StateHi storyBuffer stateH storyBuffer = null;
/1 Keep stateH storyBuffer == null to disable state change recording.

if (bH storyRecordi ngEnabl ed) {
if (bTi meToMakeCheckpoint()) {
makeCheckpoint () ;
/1 Since we just perforned a checkpoint, we do not need to
1 record state changes for this cycle. This neans
/1 that stateH storyBuffer should remain null.
per f or nCheckpoi nt Cul | i ng();

} else {
if (1Cyclelndex > |LastCheckPoi nt Cycl el ndex) {
/1 We only want to record state changes if the current
1 cycle is past (greater than) that of the |last checkpoint.

/1 NOTE:

11 I'f (ICyclelndex == | Last Checkpoi nt Cycl el ndex t hen
I a checkpoint was created on the |ast cycle.

1 If (ICyclelndex < I Last Checkpoi nt Cycl el ndex then
1 there is a bug in the system

stat eH storyBuffer = new StateH storyBuffer(lCyclelndex);
}
}
}

state. set StateHi storyBuffer(stateH storyBuffer);
I == BEGAN CYCLE ----ccmmmmmm e e oo oo

/1 I NSTRUCTI ON FETCH
IF();

/1 I NSTRUCTI ON DECCDE
1D();

/1 EXECUTE

EX();

/1 EXCEPTI ON- HANDLER
if (iExceptionCode != EXCEPTI ON_NONE) {

--- PERFORM | NTERNAL EXCEPTI ON HANDLI NG | F NECESSARY (code not shown) ---

}

/1 Increment the cycle counter.
i ncrement Cycl el ndex();

R = o o T =

if (bH storyRecordi ngEnabl ed & (stateH storyBuffer != null)) {
/1 Push the state history buffer into the state history vector,
11 then disable the recording of state changes.

69

addToSt at eHi st oryBuf fer(stateH storyBuffer);
state.set StateH storyBuffer(null);

}
} /1 end nethod perfornCycle()

private bool ean bTi mneToMakeCheckpoint () {
/1 This method i nplenents the heuristic that determ nes
1 when a checkpoint is to be created.
/1 1f it is determ ned that a checkpoint should be created,
11 then this method returns TRUE. Oherwise, it returns FALSE.

bool ean bResult = fal se;
int i CheckpointByteSi ze = i Get Next Checkpoi nt Byt eSi ze();
if ((iCheckpointCreationFactor * i CheckpointByteSize) <= i StateH storyByteSize) {
bResult = true;
}
return bResult;
} // end nmethod bTi mreToMakeCheckpoi nt ()

public void makeCheckpoint () {
/1 Create a checkpoint that records the current state
/1 of the sinulator.
cpb = doCreat eCheckpoint();
vCheckpoi nt . add(cpb);

/1 dear the current state history vector.
cl ear Stat eHi storyBuffer();

/1 Mark which cycle the checkpoint was created. This is
1 used to determ ne when state history recording

I shoul d start again.

| Last CheckPoi nt Cycl el ndex = | Cycl el ndex;

} /1 end nethod nakeCheckpoi nt ()

private int iGetNextCheckpointByteSize() {
/1 This nmethod returns an approximation to the size of the
1 next checkpoint (in nunmber of bytes).

int iResult = 0;

/1 Add all GPR registers that have a non-zero val ue.
iResult += 2; // ==length("R")
for (int i =0; i < RegisterFile.NUMREGS; i++) {
int i Regvalue = state.i GetRegister(i);
if (iRegvalue != 0) {

iResult += 12; // == length(i+"="+HexPadded(i RegVal ue, 8)+" ")
}
}
/1 Add all CPO registers that have a non-zero val ue.
iResult += 2; // ==length("0 ")
for (int i = 0; i < Coprocessor0. NUM REGS; i++) {
int i RegvValue = state.i Get CPORegi ster(i);
if (i Regvalue !'= 0) {
iResult += 12; // == length(i+"="+HexPadded(i RegVval ue, 8)+" ")
}
}
/1 Add all CPl registers that have a non-zero val ue.
iResult += 2; [/ == length("1");
for (int i =0; i < Coprocessorl. NUM REGS; i++) {
int i Regvalue = state.i Get CP1lRegister(i);
if (iRegValue != 0)
iResult += 12; // == length(i+"="+HexPadded(i RegVal ue, 8)+" ")
}
}

/1 Add nodified nenory val ues.

70

Vector v = state.vCetMdifiedAddresses();
iResult += 11; // == length("M AABBCCDD "), address
iResult += v.size() * 3; // 3 ==length("XX "), hex val ues

return i Result;
} // end nethod i Get Next Checkpoi nt Si ze()

private Checkpoi nt Buf fer doCreat eCheckpoint() {
Checkpoi nt Buf fer cpb = new Checkpoi nt Buf f er (1 Cycl el ndex);
StringBuffer sb = null;

/1 Add all GPR registers that have a non-zero val ue.
sb = new StringBuffer(CHECKPO NT_GPR + " ");
for (int i =0; i < RegisterFile.NUMREGS; i++) {
int i RegValue = state.i GetRegister(i);
if (iRegvalue !'= 0) {
sb. append(i + "=" + Uility.sAsHexPadded(i RegVal ue, 8)

}
cpb. addSt at eVal ue(sb.toString());

/1 Add all CPO registers that have a non-zero val ue.
sb = new StringBuffer(CHECKPO NT_CPO + " ");
for (int i = 0; i < Coprocessor0. NUM REGS; i++) {
int i Regvalue = state.i Get CPORegi ster(i);
if (iRRegValue != 0) {
sh. append(i + "=" + Wility.sAsHexPadded(i RegVal ue, 8)

}
cpb. addSt at eVal ue(sb.toString());

/1 Add all CPl registers that have a non-zero val ue.
sb = new StringBuffer(CHECKPO NT_CP1 + " ");
for (int i =0; i < Coprocessorl. NUM REGS; i++) {
int i RegValue = state.i Get CP1Regi ster(i);
if (i Regvalue !'= 0) {
sb. append(i + "=" + Uility.sAsHexPadded(i RegVal ue, 8)

}
cpb. addSt at eVal ue(sb.toString());
/1 Add nodified nenory val ues
Vector v = state.vCetMdifiedAddresses();
if ((v'!=null) & (v.size() > 0)) {
// There is at |east one nodified address.

Enuneration e = v.elenments();

/1l Get the first elenent, so we know which address we
11 are starting at.

int i = ((Integer)e.nextEl ement()).intValue();
int i Address = i;
sb = new StringBuffer(CHECKPO NT_MEM + " " +

Utility. sAsHexPadded(i Address, 8) + " ");
do {

/1 Get the nenory value at the current address, and add
I it to the string buffer.

byte val ue = state.| oadByte(i Address);

sb. append(Utility. sAsHexPadded(val ue, 2) + " ");

if (!e.hasMWoreEl enents()) {

/1 No nore addresses to process.
br eak;
}

/1 Increment the address counter. W expect the

+

PR

+

71

/1 next address to nmatch this increnented val ue.
i Addr ess++;

/1 Get the next address.
i = ((Integer)e.nextEl enment()).intValue();

if (i !'=iAddress) {
/1 The new address does not match the address that
11 we expected (i.e. we have a disjoint set).
1 Add the current string buffer value to the
11 command response, and prepare a new string buffer.
cpb. addSt at eVal ue(sb.toString());

i Address = i;

sb = new StringBuffer(CHECKPO NT_MEM + " " +
Utility. sAsHexPadded(i Address, 8) + " ");

}
} while (true);
cpb. addSt at eVal ue(sb.toString());
} // end if-nodified nenory val ues
return cpb;
} // end nmethod doCreat eCheckpoint ()
private void perfornCheckpointCulling() {

/1 t == 1Cyclelndex (current cycle index)
/1 C == vCheckpoint (current set of checkpoints)

if (1Cyclelndex <= 0)
return;

int iChklndex = 0; // Index into vCheckpoint vector.

/1 Some constant values to experinent with:

/' LN_1.5 = 0.17609

/1 LN 2 = 0.6931471805599453

/1 LN 3 = 1.0986122886681096

/1 LN 4 = 1.3862943611198906

/1

/1 NOTE:

/1 logn(n,x) =1og(x) / log(n), where log(k) == 10g base e of k

/1 Let k == floor(|og base 2 of t
int K= (int)(StrictMth.log((double)lCyclelndex) / 0.6931471805599453);

for (int k =K k >0; k--) {

int z = (int)StrictMath. powm(2, k);

int iUpper = (int)lCyclelndex - z; /1 Upper =1t - 27k
int iLower = (int)lCyclelndex - (z << 2) + 1, /1 Lower =1t - 2°(k+1l) + 1
if (iLower < 0)

i Lower = 0;

i

/1 Since z was already declared, but is no | onger used,

/1l we re-use it also as a flag to indicate when we first

/1 encounter a checkpoint in this region (rather than using
/1 one nore variable, like a bool ean).

z = -1

do {
/1 Get the tine index of the checkpoint specified
1 by the current checkpoint index.
Checkpoi nt Buffer cp = (Checkpoi nt Buf f er)vCheckpoi nt. el ement At (i Chkl ndex);
int i Timelndex = (int)cp.| GetCyclelndex();

if ((i Timelndex >= iLower) && (i Tinmelndex <= iUpper)) {

72

if (z ==-1) {
/1 This is the first checkpoint encountered in this
/1 region. Keep it and increnment the checkpoint
1 index to the next checkpoint.
i Chkl ndex++;
z =0; // Cear the "first encountered" flag

} else {
/1 We already encountered the first checkpoint in ths
I region, therefore this checkpoint is marked
/1 to be deleted. Go ahead and do so.
vCheckpoi nt . r enoveEl enent At (i Chkl ndex) ;

} else {
/1 W have encountered a checkpoint whose tine index
11 is outside this region. This nmeans there are no

11 nore checkpoints that can be in this region, so
I nmove to the next region.
br eak;

}
} while(true);
} // end for k == K down to 1
} /1 end method perfornCheckpoint Cul ling()

public int iPerfornndo(long | UndoDi stance) {
/*

Reverse | UndoDi st ance nunber of instructions.

RETURNS
0 SUCCESS
-1 NO MORE STATE HI STORY CHANGCE
-2 ERROR APPLYI NG STATE HI STORY CHANGE
-3 ERROR APPLYI NG CHECKPO NT STATE
-4 ERROR RE- EXECUTI NG FROM LAST CHECKPO NT
-5 EXCEPTI ON ENCOUNTED WHI LE UNDO FROM CHECKPO NT
-6 QUTPUT ERROR WHI LE RE- EXECUTI NG | NSTRUCTI ONS

*/
int iResult = 0;

if (!bH storyRecordi ngEnabl ed) {
return -1,
}

int i StateH storySize = vStateH story. size();
int iCheckpointSize = vCheckpoint.size();

sbQut put Fromndo = null; // Cear any undo output fromany previous undo.

if ((iStateH storySize == 0) && (i CheckpointSize == 0)) {
/1 There is no history information. Either we are in
I the initial state, or all the history information
/1 was cleared. Eitherway, we have no information
11 to performthe undo wth.
return -1;

}

long | Target Cycle = | Cycl el ndex - | UndoDi st ance;

/1 The target cycle is what execution cycle we are trying
/1 to get to, which is sinply the current cycle

/1 m nus the nunber of cycles we want to undo.

if (I TargetCycle < 0) {
// W can not go to a state that is earlier than
/1 the initial state.
| Target Cycle = 0;

if ((iStateH storySize == 0) || (IlUndoDistance > i StateH storySize)) {

73

/! There is no state history information. O the distance
1 of the undo is larger than the size of the state history
11 buffer. Regardless, performthe undo using the |last checkpoint.

if (1UndoDi stance > i StateH storySi ze) {
/'l dear the state history, since all of the state changes
1 recorded in it will not be used. An earlier
/1 checkpoint will be used instead.
cl ear Stat eHi storyBuffer();
}

if (iCheckpointSize > 0) {
/1 Set the state to that of the l|ast useful checkpoint
1 that was created.

Checkpoi nt Buffer cpb = null;
I ong | Checkpoi nt Cycl el ndex = -1;
/1 Find a checkpoint buffer to start from
try {
do {
cpb = (Checkpoi nt Buf f er) vCheckpoi nt. el ement At (i Checkpoi nt Si ze-1);
| Checkpoi nt Cycl el ndex = cpb. | Get Cycl el ndex();
if (I CheckpointCyclelndex > | Target Cycle) {
/1 The checkpoint represents a state at a point in tine
/1 AFTER the desired target cycle. It would be better
I to exam ne the next checkpoint.

vCheckpoi nt . renoveEl ement At (i Checkpoi nt Si ze-1);

i Checkpoi nt Si ze--;

if (iCheckpointSize <= 0)
/1 This is a safety check. |If no nore checkpoints
1 exi sts, then go back to the reset state.
state.reset();
cpb = null;
br eak;

} else {
br eak;

}
} while (true);

if (1 CheckpointCyclelndex == | Target Cycle) {
/1 The previous cycle (iTargetCycle) was when the
11 checkpoi nt was created. W can renpve the checkpoint,
I since if the user goes back further, the top checkpoint
11 is no longer useful. |f the user steps forward,
1 the checkpoint will be recreated.
vCheckpoi nt . renoveEl ement At (i Checkpoi nt Si ze-1);
i Checkpoi nt Si ze--;

}
} catch (Exception e) {
cpb = null;

}

/1 We found no suitable checkpoint buffer. Either an error occurred,
1 or there is no nore suitable undo information avail abl e.
if (cpb == null) {
return -1; // NO MORE STATE H STORY CHANGE
}

/1 Set the state back to the reset state. Al nenory and
/1 regi ster values should be defaulted to have the value 0.
state.reset();

| Cycl el ndex = | Checkpoi nt Cycl el ndex;
/1 Set the current cycle count to the tine index stored
11 in the checkpoint buffer.

/1 Apply all of the state settings stored in the checkpoint.
Vector v = cpb. vGet StateRecord();

74

Enuneration e = v.el enents();

whil e (e.hasMoreEl enents()) {
String s = (String)e. nextEl enent();
int x = i Appl yCheckpoi nt Setting(s);

if (x!=0)
/1 This is nost likely the result of an
1 internal bug in the simulator.
return -3;
}
} else {

/!l Set the state to the reset state.
state.reset();

}

/1 Disable any exceptions that triggered fromthe previously
1 executed instruction.
i Excepti onCode = EXCEPTI ON_NONE;

// * % % RE_ EXECLJTI O\l Pl_'A\SE kkhkkhkkhkhkkhkhkkhkhkhkhhkkhhkdhkhhhhhhhdrhdhhhhhhhxdxkx*x
/1 Performcycles until the cycle count reaches | TargetCycl e,

I or an exception triggers.

while (I Cyclelndex < | Target Cycle) {

try {
int i = iPerforntStep(l TargetCycle - | Cyclel ndex);

switch (i) {

case 0:
/1 No Error
br eak;

case -1: // = BREAKPO NT ENCOUNTERED (whi ch one is set in iBreakpointlndex)
/1 1gnore breakpoint?
br eak;

case -2: // = GUARD ENCOUNTED (which one is set in iGuardlndex)
/1 1gnore guard?
br eak;

default: // = CRITICAL ERROR (out of nenory?)
t hrow new Exception();

} catch (Sinmul atorException e) {

/1 Simul at or Exception triggered (invalid opcode, etc).
1 Ref er to EXCEPTI ON_CODE val ue.

if (i ExceptionCode == EXCEPTI ON_OUTPUT_WAI TI NG {
/1 Sonme output was requested. Store the output in a buffer for now
StringBuffer sbQutput = new StringBuffer();
if (iReadCQutput(sbQutput) == 0) {
if (sbQutputFronndo == null) {
sbQut put Fromndo = new StringBuffer();

}

sbQut put Fr omndo. append(sbQut put) ;
} else {

return -6;

} else {
return -5;

}
} catch (Exception e) {

/1 CRITICAL_ERROR (index out of range, null pointer --

/1 indicates either a bug in the simulator, or
1 perhaps an out of nmenory condition).
return -4,

}
} /1 end while (performing cycles until reach i TargetCycle)

// Rk Sk Sk Sk R Sk S Sk S Sk S Sk S R S R S Sk Sk Sk Sk Sk kS Sk Sk Sk Sk Sk S S Sk Sk gk Sk Sk Sk S S S Sk Sk Sk Sk Sk Sk S S S S S S S

} else {

75

/1 There is undo information in the state history buffer.
1 These are performed first, before checkpoints.

do {

StateH storyBuffer shb = null;
/1l Get the last state history buffer instance.
try {
shb = (StateH storyBuffer)vStateH story. el ement At (i StateHi storySize-1);
vSt at eH story. renoveEl ement At (i St at eHi storySi ze-1);
i StateH storySi ze--;
} catch (Exception e) {
shb = nul | ;
}
if (shb == null) {
/! Either an error occurred, or there was no state history
/1 buffer information (nmeaning there is no undo infornmation).
return -1; // NO MORE STATE H STORY CHANGE
}

/1 Apply the state values stored in the change buffer.
11 These nmust be applied in reverse, so that the
1 state is returned to its earliest state per this
1 change buffer.
Vector v = shb.vGetStateHi story();
for (int i =v.size()-1; i >=0; i--) {

String s = (String)v.elementAt(i);

int x = iApplyStateSetting(s);

if (x!1=0)
/! This is nost likely the result of an
11 internal bug in the simulator.
return -2;
}
/1 1t is assuned that each state history el enent represents
11 one cycle of execution (because at |least $PC will change

/1 on every cycle). Therefore, undoing this state history

/1 change decreases the cycle count by one. But to be certain,
11 use the cycle index stored in the SHB instead.

| Cycl el ndex = shb. | Get Cycl el ndex();

/1 Decrease the size of the state history by the size of the

11 state history buffer that was just applied. This is for

11 performance reasons, so that the size of the history buffer
/1 does not need to be directly re-cal cul ated each cycle.

i Stat eHi storyByteSi ze -= shb.i GetSi ze();

} while (ICyclelndex > | Target Cycle);

/1 Disable any exception that was caused by the previous comand.

I If we don't, then the instruction will be undone, but a pending
1 exception will be waiting (e.g. for input) when it shouldn't be.
i Excepti onCode = EXCEPTI ON_NONE;

} // end state-history undo
return i Result;
} /1 end nmethod i Performnmndo()

76

Simulated Checkpoint Culling

The following is a short Java Application that demonstrates the checkpoint culling

process, described in Chapter 5. This program was used to generate Table 5.1.

public class SinmulateCheckpointCulling {

private static String sCheckpoint Vector
private static final int MAX_TI ME_I NDEX
private static final int LOG BASE = 2;

e
50;

public static void main(String[] args) {

for (int i = 0; i <= MAX_TIME_INDEX; i++) {
sCheckpoi nt Vector += "X"; // Create new checkpoint.
doCul | Checkpoints(i);

}
}

private static void doCul | Checkpoints(int t) {

if (t <= 0)
return;

int K= (int)(Math.log(t) / Math.log(LOG BASE)); // log base b of t =1In(t) / In(b)
for (int k = K k >=0; k--) {

int low=1t - (int)Math. pow(LOG BASE, k+1) + 1,
int high =t - (int)Math. pow(LOG BASE, k);

if (low < 0)
low = 0;

bool ean foundFirst = fal se;
for (int i =low i <= high; i++) {
if (sCheckpointVector.charAt(i) =="X) {
if (foundFirst) {
/1 Del ete checkpoint i
sCheckpoi nt Vect or = sCheckpoi nt Vector. substring(0, i) +
"-" + sCheckpoi nt Vector. substring(i+1);

} else {
foundFirst = true;
}
}
}
Systemout.print(low+ " to " + high + "\t");

}
Systemout.println("\t" + sCheckpointVector);

} // end nmethod doCul | Checkpoints(int t)

} /1 end class SimulateCheckpointCulling

LIST OF REFERENCES

[1] J. S. Plank, “An Overview of Checkpointing in Uniprocessor and Distributed
Systems Focusing on Implementation and Performance,” Tech. Report UT-CS-97-372,
Department of Computer Science, University of Tennessee, Knoxville, Tenn., 1997.
http://citeseer.nj.nec.com pl ank97overvi ew. ht m (accessed
05/04/2001)

[2] R. Sosic, “History Cache: Hardware Support for Reverse Execution,” Computer
Architecture News, 22(5):11-18, 1994.

http://citeseer.nj.nec.com sosi c94hi story. ht ml (accessed
05/04/2001)

[3] B.P. Miller and J-D Choi, “A Mechanism for Efficient Debugging of Parallel
Programs,” In Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and
Distributed Debugging, published in SIGPLAN Notices, pages 141-150, January 1989.

[4] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “An Execution-Backtracking
Approach to Debugging,” IEEE Software, 8(3):21-26, May 1991.

[5] S. Feldman and C. B. Brown, “IGOR: A System for Program Debugging via
Reversible Execution,” In Proceedings of the ACM SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, SIGPLAN Notices, pages 112-123, January 1989.

[6] C. Demetrescu and I. Finocchi, “LEONARDO: A C Programming Environment for
Reversible Execution and Software Visualization,” 1999.

http://ww. di s.unironal.it/~denetres/Leonardo (accessed
06/12/2001)

[7] B. Boothe, “Algorithms for Bidirectional Debugging,” Tech. Report USM/CS-98-2-
23, Dept. of Computer Science, University of Southern Maine, Portland, ME, 1998.

[8] M. P. Frank, “Reversibility for Efficient Computing,” Ph.D. dissertation, University
of Florida, 1999. htt p://ww. ci se. ufl . edu/ ~npf/ manuscri pt (accessed
07/10/2001)

[9] B.J.Ross, “Running Programs Backwards: The Logical Inversion of Imperative
Computation,” Formal Aspects of Computing, 9:331-348, 1997.
http://citeseer.nj.nec.com ross98runni ng. ht m (accessed
05/04/2001)

77

http://citeseer.nj.nec.com/plank97overview.html
http://citeseer.nj.nec.com/sosic94history.html
http://www.dis.uniroma1.it/~demetres/Leonardo
http://www.cise.ufl.edu/~mpf/manuscript
http://citeseer.nj.nec.com/ross98running.html

78

[10] Y. M. Wang, Y. Huang, K. P. Vo, P. Y. Chung, and C. Kintala, “Checkpointing and
its Applications,” In 25th International Symposium on Fault-Tolerant Computing, pages
22-31, Pasadena, CA, June 1995.

http://citeseer.nj.nec.com wang95checkpoi nti ng. ht m (accessed
05/04/2001)

[11] D. Z. Pan and M. A. Linton, “Supporting Reverse Execution of Parallel Programs,”
In Proceedings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed
Debugging, published in SIGPLAN Notices, pages 124-129, January 1989.

[12] M. Beck, J. S. Plank, and G. Kingsley, “Compiler-Assisted Checkpointing,”
Technical Report CS-94-269, University of Tennessee at Knoxville, December 1994,
http://citeseer.nj.nec.com 173887. ht m (accessed 05/04/2001)

[13] M. Ronsse, K. Bosschere, and J. C. Kergommeaux, “Execution Replay and
Debugging,” Ghent University, 1999.

[14] R. Chow and T. Johnson, Distributed Operating Systems and Algorithms, Addison
Wesley Longman, Inc., Berkeley, California, 1997.

[15] R.M. Balzer, “EXDAMS: EXtendable Debugging and Monitoring System,” In
Proc. Spring Joint Computer Conf., pages 567-589. AFIPS Press, Reston, VA, 1969.

[16] D. A. Patterson and J. L. Hennessy, Computer Organization & Design: The
Hardware/Software Interface, Morgan Kaufmann Publishers, San Francisco, California,
1994.

[17] D. Sweetman, See MIPS Run, Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1999.

http://citeseer.nj.nec.com/wang95checkpointing.html
http://citeseer.nj.nec.com/173887.html

BIOGRAPHICAL SKETCH

Steve A. Lewis Il was born in Lafayette, Indiana, in May 1978. In the following
year, his parents moved the family to Gainesville, Florida. He attended P.K. Yonge
Developmental Research School from August 1984 until June 1996 (K-12). Steve began
his college career in August 1994 by a dual enrollment program, in which he attended
both P.K Yonge and Santa Fe Community College simultaneously. He transferred to the
University of Florida in August 1997, later receiving his Bachelor of Science degree in
computer science from the College of Liberal Arts and Sciences in December 1999.
During his undergraduate studies, he worked part time as a software programmer for
Jenmar International and MindSolve Technologies. In January 2000, he began his
graduate study in the Department of Computer and Information Science and Engineering
at the University of Florida, for the Master of Science degree in computer engineering.
He will receive the degree in August 2001. Soon thereafter, he will begin work with

Lockheed Martin in Fort Worth, Texas.

79

	Reversible Debugging Concept
	Overview of Thesis Content
	Outline of Thesis
	State Change Example
	State History Stack
	Checkpoints
	Analysis of State History Growth
	Data Representation of State History
	State History Growth Statistics
	Re-Execution Issues
	Irreversible Effects
	Checkpoint Deltas
	Reverse Checkpoint Deltas
	Circular State Change Record Buffer
	Alternative Checkpoint Creation Decision
	Case Studies
	The MIPS Assembler
	Sample MIPS Programs
	The MIPS Simulator

